Application of deep learning for informatics aided design of electrode materials in metal-ion batteries

电池(电) 计算机科学 深度学习 吞吐量 人工智能 贝叶斯优化 人工神经网络 多层感知器 机器学习 感知器 材料科学 无线 量子力学 电信 物理 功率(物理)
作者
Bin Ma,Lisheng Zhang,Wentao Wang,Hanqing Yu,Xianbin Yang,Siyan Chen,Huizhi Wang,Xinhua Liu
出处
期刊:Green Energy & Environment [Elsevier]
被引量:17
标识
DOI:10.1016/j.gee.2022.10.002
摘要

To develop emerging electrode materials and improve the performances of batteries, the machine learning techniques can provide insights to discover, design and develop battery new materials in high-throughput way. In this paper, two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage, specific capacity and specific energy. The deep learning models are trained with the multilayer perceptron as the core. The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models. Based on 10 types of ion batteries, the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V, respectively. The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms. Besides, the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries. This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
董晏殊完成签到,获得积分10
1秒前
Peetvader完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
wenge发布了新的文献求助10
2秒前
充电宝应助aaaaaa采纳,获得10
2秒前
小胖熊完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
无花果应助RR采纳,获得10
3秒前
3秒前
4秒前
vince发布了新的文献求助10
4秒前
4秒前
一方通行发布了新的文献求助10
4秒前
升升升呀发布了新的文献求助30
4秒前
想啊想发布了新的文献求助10
5秒前
细心的雪晴完成签到,获得积分20
5秒前
小二郎应助王王碎冰冰采纳,获得10
5秒前
5秒前
5秒前
7秒前
Ulrica完成签到,获得积分10
7秒前
7秒前
虞美人发布了新的文献求助10
7秒前
周灿灿完成签到,获得积分10
8秒前
研友_nv4M28完成签到,获得积分0
8秒前
qwe完成签到,获得积分10
8秒前
ddy完成签到,获得积分10
8秒前
8秒前
雨醉东风完成签到,获得积分10
8秒前
充电宝应助sm采纳,获得10
8秒前
8秒前
arizaki7应助玩命的兔子采纳,获得10
8秒前
科研通AI6应助smile采纳,获得10
8秒前
小马甲应助fffff采纳,获得10
8秒前
淡淡翠曼给突突突的求助进行了留言
8秒前
1111完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688