Application of deep learning for informatics aided design of electrode materials in metal-ion batteries

电池(电) 计算机科学 深度学习 吞吐量 人工智能 贝叶斯优化 人工神经网络 多层感知器 机器学习 感知器 材料科学 无线 量子力学 电信 物理 功率(物理)
作者
Bin Ma,Lisheng Zhang,Wentao Wang,Hanqing Yu,Xianbin Yang,Siyan Chen,Huizhi Wang,Xinhua Liu
出处
期刊:Green Energy & Environment [KeAi]
被引量:17
标识
DOI:10.1016/j.gee.2022.10.002
摘要

To develop emerging electrode materials and improve the performances of batteries, the machine learning techniques can provide insights to discover, design and develop battery new materials in high-throughput way. In this paper, two deep learning models are developed and trained with two feature groups extracted from the Materials Project datasets to predict the battery electrochemical performances including average voltage, specific capacity and specific energy. The deep learning models are trained with the multilayer perceptron as the core. The Bayesian optimization and Monte Carlo methods are applied to improve the prediction accuracy of models. Based on 10 types of ion batteries, the correlation coefficients are maintained above 0.9 compared to DFT calculation results and the mean absolute error of the prediction results for voltages of two models can reach 0.41 V and 0.20 V, respectively. The electrochemical performance prediction times for the two trained models on thousands of batteries are only 72.9 ms and 75.7 ms. Besides, the two deep learning models are applied to approach the screening of emerging electrode materials for sodium-ion and potassium-ion batteries. This work can contribute to a high-throughput computational method to accelerate the rational and fast materials discovery and design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小池同学完成签到,获得积分10
刚刚
科研通AI6应助121311采纳,获得10
1秒前
Carolin发布了新的文献求助10
1秒前
谦让涵菡完成签到 ,获得积分10
2秒前
王耀武完成签到,获得积分10
2秒前
朴素念之完成签到,获得积分20
3秒前
3秒前
学术裁缝发布了新的文献求助10
3秒前
连冬萱发布了新的文献求助10
3秒前
ruby完成签到,获得积分10
3秒前
大魔王完成签到 ,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
YW发布了新的文献求助30
4秒前
xg发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
踏实绮露完成签到 ,获得积分10
8秒前
8秒前
iam小羊人完成签到,获得积分20
9秒前
9秒前
10秒前
失眠无声完成签到,获得积分10
10秒前
Jiang完成签到,获得积分10
11秒前
大模型应助称心的乘云采纳,获得10
11秒前
桐桐应助lw采纳,获得10
12秒前
12秒前
Hello应助连冬萱采纳,获得30
13秒前
13秒前
14秒前
Rain_BJ发布了新的文献求助10
14秒前
Carolin完成签到,获得积分10
15秒前
孙宗帅发布了新的文献求助10
15秒前
15秒前
iam小羊人发布了新的文献求助20
15秒前
16秒前
下雨天睡个懒觉完成签到,获得积分10
17秒前
丘比特应助强壮的美女采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702