Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya

地质灾害 地质学 山崩 落石 数字高程模型 危害 自然灾害 仰角(弹道) 遥感 地震学 自然地理学 地貌学 地理 海洋学 化学 有机化学 几何学 数学
作者
Maximillian Van Wyk de Vries,Shashank Bhushan,Mylène Jacquemart,César Deschamps‐Berger,Étienne Berthier,Simon Gascoin,David Shean,Dan H. Shugar,Andreas Kääb
出处
期刊:Natural Hazards and Earth System Sciences 卷期号:22 (10): 3309-3327 被引量:11
标识
DOI:10.5194/nhess-22-3309-2022
摘要

Abstract. Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×106 m3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock–ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRRRR发布了新的文献求助10
1秒前
CodeCraft应助jdwxiang123采纳,获得10
2秒前
huanhuan发布了新的文献求助10
3秒前
小邓完成签到 ,获得积分10
3秒前
冬青完成签到,获得积分10
3秒前
田様应助Melody采纳,获得10
3秒前
Celia完成签到,获得积分10
3秒前
四糸乃完成签到,获得积分10
4秒前
konghuihui完成签到,获得积分20
4秒前
充电宝应助龙在天涯采纳,获得10
4秒前
llll完成签到,获得积分20
4秒前
5秒前
HQJ完成签到,获得积分20
6秒前
6秒前
7秒前
科研通AI5应助Yoin采纳,获得10
7秒前
9秒前
9秒前
Hello应助ning采纳,获得10
9秒前
9秒前
10秒前
linxiaoting发布了新的文献求助10
11秒前
动听白翠完成签到,获得积分10
11秒前
Yancy发布了新的文献求助10
11秒前
打打应助yhuyfuhk采纳,获得10
12秒前
13秒前
13秒前
蒙开心完成签到 ,获得积分10
13秒前
科研通AI5应助李鬼胥采纳,获得10
13秒前
LD发布了新的文献求助10
14秒前
RRRRR完成签到,获得积分20
14秒前
搜集达人应助小于采纳,获得10
15秒前
陈飞飞发布了新的文献求助10
15秒前
xu发布了新的文献求助10
15秒前
15秒前
四糸乃发布了新的文献求助10
16秒前
脑洞疼应助Yancy采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
略晓薛发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267