3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling

喷嘴 乳状液 材料科学 3D打印 挤压 流变学 熔融沉积模型 微粒 纳米技术 机械工程 工艺工程 计算机科学 复合材料 化学工程 工程类
作者
Jiawei Wang,Niloofar Heshmati Aghda,Junhuang Jiang,Ayishah Mridula Habib,Defang Ouyang,Mohammed Maniruzzaman
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:628: 122302-122302 被引量:19
标识
DOI:10.1016/j.ijpharm.2022.122302
摘要

Current microparticle (MP) development still strongly relies on the laborious trial-and-error approach. Herein, we developed a systemic method to evaluate the significance of MP formulation factors and predict drug loading efficiency (DLE) using design of experiment (DoE) and machine learning modeling. A first-in-class 3D printing concept was initially employed to fabricate polymeric MPs by a 3D printer. Sprayed Multi Adsorbed-droplet Reposing Technology (SMART) was developed to combine extrusion-based printing with emulsion evaporation technique to fabricate a small molecule drug i.e., 6-thioguanine (6-TG) loaded poly (lactide-co-glycolide) (PLGA) MPs. Compared to conventional emulsion evaporation method, SMART employs the shear force exerted by the printing nozzle rather than the sonication energy to generate smaller emulsion droplets in a single step. Furthermore, the applied shear force in the 3D printing process reported herein is controllable since the emulsion is extruded through the nozzle under preset printing conditions. The formulated MPs exhibited spherical structure with size distribution ∼ 1-3μ m in diameter and reached ∼ 100 % drug release at 10 h. Also, the papain-like protease (PLpro) inhibition efficacy of 6-TG in formulated MPs was maintained even after the printing process under different printing conditions. Furthermore, the formulation factor importance was assessed by DoE statistical analysis and further validated by machine learning modeling. Among the four process parameters (drug amount, printing speed, printing pressure, and nozzle size), drug amount was the most influential formulation factor. Moreover, it is interesting that nearly all the machine learning models, especially decision tree (DT), demonstrated superior performance in predicting DLE compared to DoE regression models. Overall, incorporating DoE and machine learning modeling shows great promises in the prediction and optimization of MP formulations factors by means of a novel SMART technology. Moreover, this systemic approach helps streamline the development of MP with programmable pharmaceutical attributes, representing a new paradigm for digital pharmaceutical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
潘辉完成签到,获得积分20
2秒前
佰斯特威应助南风采纳,获得10
2秒前
大胆电源发布了新的文献求助10
2秒前
2秒前
抹缇卡完成签到 ,获得积分10
3秒前
阿司匹林完成签到,获得积分20
6秒前
yy完成签到,获得积分10
7秒前
Orange应助ddd采纳,获得10
7秒前
阿司匹林发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
13秒前
关关过应助学呀学采纳,获得20
13秒前
14秒前
we发布了新的文献求助10
15秒前
ganen发布了新的文献求助10
16秒前
蔡6705发布了新的文献求助10
18秒前
风中的西牛风吹得蛋颤完成签到,获得积分10
20秒前
ddd完成签到,获得积分10
20秒前
Nabi完成签到 ,获得积分10
21秒前
cooper完成签到 ,获得积分10
23秒前
23秒前
24秒前
ddd完成签到,获得积分10
25秒前
无敌的番茄炒蛋应助张张采纳,获得20
26秒前
28秒前
ddd发布了新的文献求助10
30秒前
www关注了科研通微信公众号
30秒前
2211完成签到,获得积分10
33秒前
端庄的煎蛋完成签到,获得积分0
35秒前
seven完成签到,获得积分10
36秒前
社会小牛马完成签到,获得积分20
36秒前
科研通AI5应助蔡6705采纳,获得10
36秒前
superluckc发布了新的文献求助10
37秒前
小马甲应助大胆电源采纳,获得10
37秒前
赛因斯完成签到,获得积分10
37秒前
科研小陈完成签到,获得积分10
38秒前
Viv完成签到 ,获得积分10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281158
关于积分的说明 10023202
捐赠科研通 2997821
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731