Big Data-Driven Vocational Undergraduate Talent Training and Social Needs Adaptability Analysis and Collaborative Path Mining

就业能力 职业教育 适应性 能力(人力资源) 大数据 社会需求 知识管理 计算机科学 心理学 管理 教育学 政治学 数据挖掘 社会心理学 医疗保健 法学 经济
作者
Qianqian Lu,Lin Zhang,Chunlei Lin
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-12 被引量:1
标识
DOI:10.1155/2022/8476412
摘要

Aiming at the problem of mismatch between talent cultivation and social demand in the process of undergraduate education, this paper proposes a big data-driven method of adaptability analysis and collaborative path mining between vocational undergraduate talent cultivation and social demand. Starting from the big data-driven vocational undergraduate talent training and social needs, this paper points out the problems existing in the current social needs and puts forward the basic framework of vocational undergraduate talent training mode. Secondly, the clustering model of talent training and social demand is analyzed, and the clustering mining method is proposed. Finally, the big data-driven personnel training and social adaptation mining analysis, in their own ability and social needs adaptability analysis, the basic adaptation accounted for a higher proportion. Professional competence has a higher trust value in cluster analysis. Today's social employment situation is becoming more and more severe, and how to enhance the quality of profession undergraduate students has become one of the theoretical and practical issues worthy of attention in China's colleges at this stage. The talent training model of colleges and universities is closely in route with the demands of society, and the problem of student hire is prominent. Therefore, this paper proposes a student employability training program that combines the elements of student employability through social needs research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianzml0应助杨新宇采纳,获得10
刚刚
1秒前
认真科研发布了新的文献求助10
1秒前
2秒前
2秒前
nieinei发布了新的文献求助10
2秒前
perth完成签到,获得积分10
3秒前
Lz完成签到,获得积分10
6秒前
rtaxa完成签到,获得积分0
6秒前
知性的菠萝完成签到,获得积分10
6秒前
7秒前
Jeffery426发布了新的文献求助10
8秒前
9秒前
YYF完成签到,获得积分10
11秒前
认真科研完成签到,获得积分10
11秒前
luckygirl发布了新的文献求助10
12秒前
然然发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
翊然甜周完成签到,获得积分10
16秒前
16秒前
siwen完成签到,获得积分10
16秒前
12334完成签到,获得积分10
18秒前
kobesakura发布了新的文献求助10
18秒前
宁静致远完成签到,获得积分10
18秒前
19秒前
星辰大海应助陶治采纳,获得10
21秒前
小文cremen完成签到 ,获得积分10
23秒前
chen1999完成签到,获得积分10
23秒前
今后应助hyw采纳,获得10
23秒前
执着完成签到,获得积分10
24秒前
小爽完成签到,获得积分10
25秒前
马天垚完成签到,获得积分20
25秒前
kobesakura完成签到,获得积分20
27秒前
海森堡完成签到,获得积分10
28秒前
焦糖完成签到,获得积分10
28秒前
perth发布了新的文献求助10
29秒前
lvvyy126完成签到,获得积分10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175