Study on the 4-channel micro-monolithic design with geometry control for reversible solid oxide cell

介电谱 材料科学 电极 电解 极化(电化学) 氧化物 纳米技术 电化学 氧化钇稳定氧化锆 化学工程 下降(电信) 电流密度 光电子学 复合材料 化学 电气工程 陶瓷 工程类 冶金 立方氧化锆 物理 物理化学 量子力学 电解质
作者
Bin Wang,Li Tao,Rui Xiao,Unalome Wetwatana Hartley,Maiki Ueda,Seok Ju Han,K Li
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123732-123732 被引量:4
标识
DOI:10.1016/j.seppur.2023.123732
摘要

Reversible solid oxide cell (R-SOC) has been attracting considerable attention as a technology capable of power generation and CO2 electrolysis. In addition to new material development, innovation in structural design is also a decisive factor. In this study, a 4-channel micro-monolithic design, in the form of a tear-drop inner channel structure, was successfully developed. The micro-monolith obtained includes plurality of micro-channels growing from multiple directions and spongy active regions near the exterior surface. Uniquely, the irregular tear-drop inner channels further increase the proportion of the electrochemically active region to the overall circumference, achieving more efficient utilization of the geometric surface area. Such micro-structured cells with Ni-YSZ/YSZ/YSZ-LSM materials exhibited effective performance in the reversible operation of R-SOC. A superior performance of 1.20 W·cm−2 at 800 ℃ for H2 fuel cell was demonstrated. Similarly, during the electrolysis of CO2, current density recorded by the cells reached 1.20 A·cm−2 at 1.5 V and 800 ℃, which is competitive compared with the values of the previous design investigations. Relatively low diffusion polarization shown in electrochemical impedance spectroscopy (EIS) suggests that this is due to the very gas transfer resistance in the fuel electrode. This novel multi-channel micro-monolithic structure shows a potential to substitute the conventional tubular counterpart.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助半_采纳,获得10
2秒前
3秒前
3秒前
向阳发布了新的文献求助10
3秒前
3秒前
nanshou发布了新的文献求助10
4秒前
小龚小龚发布了新的文献求助10
4秒前
4秒前
简单的藏红花完成签到,获得积分10
4秒前
panyubo完成签到,获得积分20
5秒前
TANG发布了新的文献求助10
6秒前
可靠F发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
8秒前
天真依玉完成签到,获得积分10
8秒前
yjh发布了新的文献求助10
8秒前
9秒前
熊猫之歌完成签到,获得积分10
9秒前
9秒前
9秒前
现代蛋挞完成签到,获得积分10
10秒前
等待兔子完成签到,获得积分20
10秒前
12秒前
13秒前
14秒前
14秒前
15秒前
16秒前
田字格发布了新的文献求助10
16秒前
16秒前
luke发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
pgg147852发布了新的文献求助30
17秒前
深情海秋完成签到,获得积分10
18秒前
19秒前
20秒前
caiia完成签到,获得积分10
20秒前
YoKo完成签到,获得积分10
21秒前
霜降应助静静采纳,获得60
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646