Study on the 4-channel micro-monolithic design with geometry control for reversible solid oxide cell

介电谱 材料科学 电极 电解 极化(电化学) 氧化物 纳米技术 电化学 氧化钇稳定氧化锆 化学工程 下降(电信) 电流密度 光电子学 复合材料 化学 电气工程 陶瓷 工程类 冶金 立方氧化锆 物理 物理化学 量子力学 电解质
作者
Bin Wang,Li Tao,Rui Xiao,Unalome Wetwatana Hartley,Maiki Ueda,Seok Ju Han,K Li
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:315: 123732-123732 被引量:4
标识
DOI:10.1016/j.seppur.2023.123732
摘要

Reversible solid oxide cell (R-SOC) has been attracting considerable attention as a technology capable of power generation and CO2 electrolysis. In addition to new material development, innovation in structural design is also a decisive factor. In this study, a 4-channel micro-monolithic design, in the form of a tear-drop inner channel structure, was successfully developed. The micro-monolith obtained includes plurality of micro-channels growing from multiple directions and spongy active regions near the exterior surface. Uniquely, the irregular tear-drop inner channels further increase the proportion of the electrochemically active region to the overall circumference, achieving more efficient utilization of the geometric surface area. Such micro-structured cells with Ni-YSZ/YSZ/YSZ-LSM materials exhibited effective performance in the reversible operation of R-SOC. A superior performance of 1.20 W·cm−2 at 800 ℃ for H2 fuel cell was demonstrated. Similarly, during the electrolysis of CO2, current density recorded by the cells reached 1.20 A·cm−2 at 1.5 V and 800 ℃, which is competitive compared with the values of the previous design investigations. Relatively low diffusion polarization shown in electrochemical impedance spectroscopy (EIS) suggests that this is due to the very gas transfer resistance in the fuel electrode. This novel multi-channel micro-monolithic structure shows a potential to substitute the conventional tubular counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小李骑士采纳,获得10
1秒前
午见千山应助培乐多采纳,获得30
2秒前
深情安青应助灵巧的笑南采纳,获得10
3秒前
3秒前
4秒前
一枚研究僧应助juckblack采纳,获得30
5秒前
小蘑菇应助消音器采纳,获得10
5秒前
6秒前
6秒前
阿西吧发布了新的文献求助10
7秒前
123456发布了新的文献求助10
7秒前
无花果应助小冉采纳,获得10
9秒前
冉涛发布了新的文献求助10
9秒前
9秒前
顺心醉蝶发布了新的文献求助50
10秒前
12秒前
顺心季节完成签到,获得积分10
12秒前
Acc发布了新的文献求助10
14秒前
MUAL完成签到,获得积分10
14秒前
充电宝应助b1124019采纳,获得10
14秒前
16秒前
可可完成签到,获得积分10
16秒前
齐佳发布了新的文献求助10
18秒前
19秒前
19秒前
sadascaqwqw完成签到 ,获得积分10
20秒前
岁檀完成签到,获得积分10
20秒前
22秒前
WWW发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
AireenBeryl531举报evan_L求助涉嫌违规
26秒前
28秒前
王小静完成签到,获得积分10
29秒前
29秒前
儒雅致远发布了新的文献求助10
29秒前
2222233完成签到,获得积分10
31秒前
希望天下0贩的0应助Nowind采纳,获得10
31秒前
淙淙柔水完成签到,获得积分0
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097