Adaptive Mask Sampling and Manifold to Euclidean Subspace Learning With Distance Covariance Representation for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 子空间拓扑 人工智能 协方差矩阵 数学 协方差 特征(语言学) 采样(信号处理) 计算机科学 欧几里德距离 像素 投影(关系代数) 代表(政治) 线性子空间 特征向量 计算机视觉 算法 统计 语言学 哲学 几何学 滤波器(信号处理) 政治 政治学 法学
作者
Mingsong Li,Wei Li,Yikun Liu,Yuwen Huang,Gongping Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:21
标识
DOI:10.1109/tgrs.2023.3265388
摘要

For the abundant spectral and spatial information recorded in hyperspectral images (HSIs), fully exploring spectral-spatial relationships has attracted widespread attention in hyperspectral image classification (HSIC) community. However, there are still some intractable obstructs. For one thing, in the patch based processing pattern, some spatial neighbor pixels are often inconsistent with the central pixel in land-cover class. For another thing, linear and nonlinear correlations between different spectral bands are vital yet tough for representing and excavating. To overcome these mentioned issues, an adaptive mask sampling and manifold to Euclidean subspace learning (AMS-M2ESL) framework is proposed for HSIC. Specifically, an adaptive mask based intra-patch sampling (AMIPS) module is firstly formulated for intra-patch sampling in an adaptive mask manner based on central spectral vector oriented spatial relationships. Then, based on distance covariance descriptor, a dual channel distance covariance representation (DC-DCR) module is proposed for modeling unified spectral-spatial feature representations and exploring spectral-spatial relationships, especially linear and nonlinear interdependence in spectral domain. Furthermore, considering that distance covariance matrix lies on the symmetric positive definite (SPD) manifold, we implement a manifold to Euclidean subspace learning (M2ESL) module respecting Riemannian geometry of SPD manifold for high-level spectral-spatial feature learning. Additionally, we introduce an approximate matrix square-root (ASQRT) layer for efficient Euclidean subspace projection. Extensive experimental results on three popular HSI data sets with limited training samples demonstrate the superior performance of the proposed method compared with other state-of-the-art methods. The source code is available at https://github.com/lms-07/AMS-M2ESL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ED应助科研通管家采纳,获得30
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
科研通AI5应助daisy采纳,获得10
5秒前
李天恩完成签到,获得积分10
7秒前
爱吃一品海参的牛奶糖完成签到,获得积分20
8秒前
lee发布了新的文献求助10
8秒前
10秒前
DireWolf完成签到 ,获得积分10
11秒前
dawang发布了新的文献求助10
14秒前
Meya给Meya的求助进行了留言
15秒前
思源应助dawang采纳,获得10
19秒前
20秒前
搜集达人应助二三采纳,获得10
21秒前
acb发布了新的文献求助10
24秒前
xubaohui完成签到,获得积分10
24秒前
dawang完成签到,获得积分10
26秒前
xubaohui发布了新的文献求助10
29秒前
fang发布了新的文献求助10
30秒前
孝顺的觅风完成签到 ,获得积分10
33秒前
活力的语堂完成签到 ,获得积分10
33秒前
rh1006发布了新的文献求助10
34秒前
干净的翠琴完成签到 ,获得积分10
35秒前
戈屋啊完成签到 ,获得积分10
35秒前
李健的小迷弟应助qiuzhiqi采纳,获得10
39秒前
13333完成签到 ,获得积分10
39秒前
40秒前
JESI完成签到,获得积分10
42秒前
及禾应助yuqinghui98采纳,获得10
42秒前
43秒前
Lyj完成签到,获得积分10
43秒前
wmq完成签到,获得积分10
44秒前
AAAAA完成签到,获得积分10
44秒前
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343