Adaptive Mask Sampling and Manifold to Euclidean Subspace Learning With Distance Covariance Representation for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 子空间拓扑 人工智能 协方差矩阵 数学 协方差 特征(语言学) 采样(信号处理) 计算机科学 欧几里德距离 像素 投影(关系代数) 代表(政治) 线性子空间 特征向量 计算机视觉 算法 统计 语言学 哲学 几何学 滤波器(信号处理) 政治 政治学 法学
作者
Mingsong Li,Wei Li,Yikun Liu,Yuwen Huang,Gongping Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:36
标识
DOI:10.1109/tgrs.2023.3265388
摘要

For the abundant spectral and spatial information recorded in hyperspectral images (HSIs), fully exploring spectral-spatial relationships has attracted widespread attention in hyperspectral image classification (HSIC) community. However, there are still some intractable obstructs. For one thing, in the patch based processing pattern, some spatial neighbor pixels are often inconsistent with the central pixel in land-cover class. For another thing, linear and nonlinear correlations between different spectral bands are vital yet tough for representing and excavating. To overcome these mentioned issues, an adaptive mask sampling and manifold to Euclidean subspace learning (AMS-M2ESL) framework is proposed for HSIC. Specifically, an adaptive mask based intra-patch sampling (AMIPS) module is firstly formulated for intra-patch sampling in an adaptive mask manner based on central spectral vector oriented spatial relationships. Then, based on distance covariance descriptor, a dual channel distance covariance representation (DC-DCR) module is proposed for modeling unified spectral-spatial feature representations and exploring spectral-spatial relationships, especially linear and nonlinear interdependence in spectral domain. Furthermore, considering that distance covariance matrix lies on the symmetric positive definite (SPD) manifold, we implement a manifold to Euclidean subspace learning (M2ESL) module respecting Riemannian geometry of SPD manifold for high-level spectral-spatial feature learning. Additionally, we introduce an approximate matrix square-root (ASQRT) layer for efficient Euclidean subspace projection. Extensive experimental results on three popular HSI data sets with limited training samples demonstrate the superior performance of the proposed method compared with other state-of-the-art methods. The source code is available at https://github.com/lms-07/AMS-M2ESL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助LSH慧采纳,获得10
刚刚
zz应助仁爱的野狼采纳,获得10
1秒前
深情安青应助仁爱的野狼采纳,获得10
1秒前
Hello应助仁爱的野狼采纳,获得10
1秒前
共享精神应助仁爱的野狼采纳,获得10
1秒前
Hello应助仁爱的野狼采纳,获得10
1秒前
wanci应助仁爱的野狼采纳,获得30
1秒前
wakeeeeeee完成签到,获得积分10
1秒前
任性枕头完成签到,获得积分10
1秒前
LisA__完成签到,获得积分10
2秒前
无极微光应助科克采纳,获得20
2秒前
Hello应助宁宁采纳,获得10
2秒前
CipherSage应助饱满从蕾采纳,获得10
2秒前
云1发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
barenlove完成签到,获得积分10
4秒前
4秒前
may完成签到,获得积分10
4秒前
yzy完成签到,获得积分20
5秒前
快乐嚓茶发布了新的文献求助10
5秒前
5秒前
格林完成签到,获得积分10
5秒前
共享精神应助DQ采纳,获得10
6秒前
ccc完成签到,获得积分20
6秒前
Akim应助呆萌贞采纳,获得10
6秒前
慕青应助披着羊皮的狼采纳,获得10
7秒前
科目三应助郝煜祺采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ZitongShen关注了科研通微信公众号
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132