Adaptive Mask Sampling and Manifold to Euclidean Subspace Learning With Distance Covariance Representation for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 子空间拓扑 人工智能 协方差矩阵 数学 协方差 特征(语言学) 采样(信号处理) 计算机科学 欧几里德距离 像素 投影(关系代数) 代表(政治) 线性子空间 特征向量 计算机视觉 算法 统计 哲学 滤波器(信号处理) 政治 语言学 法学 政治学 几何学
作者
Mingsong Li,Wei Li,Yikun Liu,Yuwen Huang,Gongping Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:10
标识
DOI:10.1109/tgrs.2023.3265388
摘要

For the abundant spectral and spatial information recorded in hyperspectral images (HSIs), fully exploring spectral-spatial relationships has attracted widespread attention in hyperspectral image classification (HSIC) community. However, there are still some intractable obstructs. For one thing, in the patch based processing pattern, some spatial neighbor pixels are often inconsistent with the central pixel in land-cover class. For another thing, linear and nonlinear correlations between different spectral bands are vital yet tough for representing and excavating. To overcome these mentioned issues, an adaptive mask sampling and manifold to Euclidean subspace learning (AMS-M2ESL) framework is proposed for HSIC. Specifically, an adaptive mask based intra-patch sampling (AMIPS) module is firstly formulated for intra-patch sampling in an adaptive mask manner based on central spectral vector oriented spatial relationships. Then, based on distance covariance descriptor, a dual channel distance covariance representation (DC-DCR) module is proposed for modeling unified spectral-spatial feature representations and exploring spectral-spatial relationships, especially linear and nonlinear interdependence in spectral domain. Furthermore, considering that distance covariance matrix lies on the symmetric positive definite (SPD) manifold, we implement a manifold to Euclidean subspace learning (M2ESL) module respecting Riemannian geometry of SPD manifold for high-level spectral-spatial feature learning. Additionally, we introduce an approximate matrix square-root (ASQRT) layer for efficient Euclidean subspace projection. Extensive experimental results on three popular HSI data sets with limited training samples demonstrate the superior performance of the proposed method compared with other state-of-the-art methods. The source code is available at https://github.com/lms-07/AMS-M2ESL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无语的冷卉完成签到,获得积分10
1秒前
hongjie_w发布了新的文献求助10
2秒前
神之韵完成签到 ,获得积分10
2秒前
4秒前
4秒前
4秒前
乐乐应助奥一奥采纳,获得30
4秒前
WQY完成签到,获得积分10
5秒前
舒适的明杰完成签到 ,获得积分10
5秒前
小蘑菇应助FG采纳,获得10
5秒前
6秒前
坚强志泽完成签到 ,获得积分10
6秒前
呢呢发布了新的文献求助10
7秒前
狂野的天薇完成签到 ,获得积分10
7秒前
赘婿应助无语的冷卉采纳,获得10
7秒前
CipherSage应助011235813采纳,获得10
8秒前
快乐水发布了新的文献求助10
9秒前
11秒前
11秒前
狂野的天薇关注了科研通微信公众号
11秒前
圆滑的铁勺完成签到,获得积分10
12秒前
12秒前
ssnha完成签到 ,获得积分10
15秒前
Dr W发布了新的文献求助20
15秒前
sx发布了新的文献求助10
17秒前
情怀应助嗷呜嗷呜采纳,获得30
19秒前
20秒前
Lucas应助故里采纳,获得10
22秒前
丘比特应助醉熏的井采纳,获得10
23秒前
sx完成签到,获得积分10
24秒前
SciGPT应助衬衣采纳,获得10
25秒前
Hello应助年年采纳,获得30
26秒前
27秒前
善学以致用应助肥肥采纳,获得10
28秒前
29秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
32秒前
乐乐应助科研通管家采纳,获得20
32秒前
慕青应助醉熏的井采纳,获得10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094