End-to-end interpretable disease–gene association prediction

计算机科学 异构网络 图形 基因调控网络 机器学习 人工智能 联想(心理学) 计算生物学 基因 数据挖掘 理论计算机科学 遗传学 生物 电信 哲学 基因表达 无线网络 认识论 无线
作者
Yang Li,Zihou Guo,Keqi Wang,Xin Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:21
标识
DOI:10.1093/bib/bbad118
摘要

Abstract Identifying disease–gene associations is a fundamental and critical biomedical task towards understanding molecular mechanisms, the diagnosis and treatment of diseases. It is time-consuming and expensive to experimentally verify causal links between diseases and genes. Recently, deep learning methods have achieved tremendous success in identifying candidate genes for genetic diseases. The gene prediction problem can be modeled as a link prediction problem based on the features of nodes and edges of the gene–disease graph. However, most existing researches either build homogeneous networks based on one single data source or heterogeneous networks based on multi-source data, and artificially define meta-paths, so as to learn the network representation of diseases and genes. The former cannot make use of abundant multi-source heterogeneous information, while the latter needs domain knowledge and experience when defining meta-paths, and the accuracy of the model largely depends on the definition of meta-paths. To address the aforementioned challenges above bottlenecks, we propose an end-to-end disease–gene association prediction model with parallel graph transformer network (DGP-PGTN), which deeply integrates the heterogeneous information of diseases, genes, ontologies and phenotypes. DGP-PGTN can automatically and comprehensively capture the multiple latent interactions between diseases and genes, discover the causal relationship between them and is fully interpretable at the same time. We conduct comprehensive experiments and show that DGP-PGTN outperforms the state-of-the-art methods significantly on the task of disease–gene association prediction. Furthermore, DGP-PGTN can automatically learn the implicit relationship between diseases and genes without manually defining meta paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
en发布了新的文献求助10
刚刚
LOYAL发布了新的文献求助10
2秒前
研友_VZG7GZ应助元宝采纳,获得10
2秒前
2秒前
打打应助Sandro采纳,获得10
3秒前
guzhfia发布了新的文献求助10
3秒前
浮游应助baling采纳,获得30
3秒前
慕青应助打工人采纳,获得10
5秒前
8R60d8应助故意的秋烟采纳,获得10
5秒前
5秒前
SccS发布了新的文献求助10
5秒前
6秒前
8秒前
RUI发布了新的文献求助10
8秒前
LOYAL发布了新的文献求助10
10秒前
hhhh发布了新的文献求助10
11秒前
科研通AI5应助Ds采纳,获得10
12秒前
12秒前
山茶发布了新的文献求助10
12秒前
15秒前
JOJO发布了新的文献求助10
15秒前
浮游应助香菜采纳,获得10
16秒前
传奇3应助hhhh采纳,获得10
16秒前
16秒前
16秒前
淡淡冷荷发布了新的文献求助10
18秒前
orixero应助吴学成采纳,获得10
18秒前
文文完成签到,获得积分10
19秒前
希望天下0贩的0应助山茶采纳,获得10
19秒前
华仔应助齐天大圣采纳,获得10
20秒前
liao宝宝发布了新的文献求助10
20秒前
21秒前
完美世界应助要开心吖采纳,获得10
22秒前
科研通AI5应助LOYAL采纳,获得10
22秒前
22秒前
无花果应助飞阳采纳,获得10
23秒前
阳光应助Hmzek采纳,获得30
23秒前
rrrrrrry发布了新的文献求助10
24秒前
yuzhu完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181532
求助须知:如何正确求助?哪些是违规求助? 4368481
关于积分的说明 13603244
捐赠科研通 4219672
什么是DOI,文献DOI怎么找? 2314180
邀请新用户注册赠送积分活动 1312904
关于科研通互助平台的介绍 1261591