End-to-end interpretable disease–gene association prediction

计算机科学 异构网络 图形 基因调控网络 机器学习 人工智能 联想(心理学) 计算生物学 基因 数据挖掘 理论计算机科学 遗传学 生物 无线 基因表达 哲学 认识论 无线网络 电信
作者
Yang Li,Zihou Guo,Keqi Wang,Xin Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:11
标识
DOI:10.1093/bib/bbad118
摘要

Abstract Identifying disease–gene associations is a fundamental and critical biomedical task towards understanding molecular mechanisms, the diagnosis and treatment of diseases. It is time-consuming and expensive to experimentally verify causal links between diseases and genes. Recently, deep learning methods have achieved tremendous success in identifying candidate genes for genetic diseases. The gene prediction problem can be modeled as a link prediction problem based on the features of nodes and edges of the gene–disease graph. However, most existing researches either build homogeneous networks based on one single data source or heterogeneous networks based on multi-source data, and artificially define meta-paths, so as to learn the network representation of diseases and genes. The former cannot make use of abundant multi-source heterogeneous information, while the latter needs domain knowledge and experience when defining meta-paths, and the accuracy of the model largely depends on the definition of meta-paths. To address the aforementioned challenges above bottlenecks, we propose an end-to-end disease–gene association prediction model with parallel graph transformer network (DGP-PGTN), which deeply integrates the heterogeneous information of diseases, genes, ontologies and phenotypes. DGP-PGTN can automatically and comprehensively capture the multiple latent interactions between diseases and genes, discover the causal relationship between them and is fully interpretable at the same time. We conduct comprehensive experiments and show that DGP-PGTN outperforms the state-of-the-art methods significantly on the task of disease–gene association prediction. Furthermore, DGP-PGTN can automatically learn the implicit relationship between diseases and genes without manually defining meta paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助绘梨衣采纳,获得10
刚刚
华仔应助励志小薛采纳,获得10
刚刚
刚刚
1秒前
单薄新烟发布了新的文献求助10
2秒前
2秒前
桐桐应助小王采纳,获得10
2秒前
3秒前
3秒前
3秒前
楚岸发布了新的文献求助10
5秒前
阿强哥20241101完成签到,获得积分10
5秒前
TQY完成签到,获得积分10
6秒前
Khr1stINK发布了新的文献求助10
6秒前
宁静致远完成签到,获得积分10
6秒前
mxbyccbaby完成签到,获得积分10
7秒前
7秒前
楼寒天发布了新的文献求助30
7秒前
7秒前
jdmeme完成签到 ,获得积分10
8秒前
DVD完成签到 ,获得积分10
9秒前
学术嫪毐完成签到,获得积分10
9秒前
Xyyy发布了新的文献求助10
10秒前
uu完成签到,获得积分10
10秒前
小蘑菇应助赵赵赵采纳,获得10
10秒前
阿兹卡班狂徒完成签到 ,获得积分10
10秒前
10秒前
yuefeng发布了新的文献求助10
11秒前
澳臻白发布了新的文献求助10
11秒前
12秒前
刘大妮发布了新的文献求助10
12秒前
12秒前
王欧尼发布了新的文献求助10
13秒前
sooya关注了科研通微信公众号
13秒前
14秒前
14秒前
青木蓝发布了新的文献求助10
16秒前
852应助gaga采纳,获得10
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794