End-to-end interpretable disease–gene association prediction

计算机科学 异构网络 图形 基因调控网络 机器学习 人工智能 联想(心理学) 计算生物学 基因 数据挖掘 理论计算机科学 遗传学 生物 电信 哲学 基因表达 无线网络 认识论 无线
作者
Yang Li,Zihou Guo,Keqi Wang,Xin Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:21
标识
DOI:10.1093/bib/bbad118
摘要

Abstract Identifying disease–gene associations is a fundamental and critical biomedical task towards understanding molecular mechanisms, the diagnosis and treatment of diseases. It is time-consuming and expensive to experimentally verify causal links between diseases and genes. Recently, deep learning methods have achieved tremendous success in identifying candidate genes for genetic diseases. The gene prediction problem can be modeled as a link prediction problem based on the features of nodes and edges of the gene–disease graph. However, most existing researches either build homogeneous networks based on one single data source or heterogeneous networks based on multi-source data, and artificially define meta-paths, so as to learn the network representation of diseases and genes. The former cannot make use of abundant multi-source heterogeneous information, while the latter needs domain knowledge and experience when defining meta-paths, and the accuracy of the model largely depends on the definition of meta-paths. To address the aforementioned challenges above bottlenecks, we propose an end-to-end disease–gene association prediction model with parallel graph transformer network (DGP-PGTN), which deeply integrates the heterogeneous information of diseases, genes, ontologies and phenotypes. DGP-PGTN can automatically and comprehensively capture the multiple latent interactions between diseases and genes, discover the causal relationship between them and is fully interpretable at the same time. We conduct comprehensive experiments and show that DGP-PGTN outperforms the state-of-the-art methods significantly on the task of disease–gene association prediction. Furthermore, DGP-PGTN can automatically learn the implicit relationship between diseases and genes without manually defining meta paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lysixsixsix完成签到,获得积分10
3秒前
渴望者完成签到,获得积分10
4秒前
大橙子发布了新的文献求助10
4秒前
ZQ完成签到,获得积分10
11秒前
小包子完成签到,获得积分10
12秒前
liyan完成签到 ,获得积分10
13秒前
14秒前
嗯啊完成签到,获得积分10
16秒前
酷波er应助immm采纳,获得10
17秒前
优雅含莲完成签到 ,获得积分10
17秒前
呜啦啦完成签到,获得积分10
18秒前
18秒前
lulu8809完成签到,获得积分10
21秒前
21秒前
二十五完成签到,获得积分10
22秒前
romeo完成签到,获得积分10
23秒前
kaka完成签到 ,获得积分10
23秒前
Akim应助xialuoke采纳,获得10
23秒前
昏睡的蟠桃应助guoxingliu采纳,获得200
24秒前
慕容松完成签到,获得积分10
25秒前
romeo发布了新的文献求助10
25秒前
ss_hHe完成签到,获得积分10
26秒前
26秒前
27秒前
zjcomposite完成签到,获得积分10
27秒前
nn发布了新的文献求助10
27秒前
css完成签到,获得积分10
27秒前
大橙子发布了新的文献求助10
28秒前
1111完成签到,获得积分10
28秒前
敏er好学完成签到,获得积分10
29秒前
细腻的谷秋完成签到 ,获得积分10
29秒前
独特的易形完成签到,获得积分10
30秒前
yangyangyang完成签到,获得积分0
33秒前
yirenli完成签到,获得积分10
34秒前
叶子完成签到 ,获得积分10
34秒前
angel完成签到,获得积分10
36秒前
正经大善人完成签到,获得积分10
38秒前
动听的秋白完成签到 ,获得积分10
39秒前
汉堡包应助biofresh采纳,获得30
39秒前
自然归尘完成签到 ,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022