End-to-end interpretable disease–gene association prediction

计算机科学 异构网络 图形 基因调控网络 机器学习 人工智能 联想(心理学) 计算生物学 基因 数据挖掘 理论计算机科学 遗传学 生物 电信 哲学 基因表达 无线网络 认识论 无线
作者
Yang Li,Zihou Guo,Keqi Wang,Xin Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:21
标识
DOI:10.1093/bib/bbad118
摘要

Abstract Identifying disease–gene associations is a fundamental and critical biomedical task towards understanding molecular mechanisms, the diagnosis and treatment of diseases. It is time-consuming and expensive to experimentally verify causal links between diseases and genes. Recently, deep learning methods have achieved tremendous success in identifying candidate genes for genetic diseases. The gene prediction problem can be modeled as a link prediction problem based on the features of nodes and edges of the gene–disease graph. However, most existing researches either build homogeneous networks based on one single data source or heterogeneous networks based on multi-source data, and artificially define meta-paths, so as to learn the network representation of diseases and genes. The former cannot make use of abundant multi-source heterogeneous information, while the latter needs domain knowledge and experience when defining meta-paths, and the accuracy of the model largely depends on the definition of meta-paths. To address the aforementioned challenges above bottlenecks, we propose an end-to-end disease–gene association prediction model with parallel graph transformer network (DGP-PGTN), which deeply integrates the heterogeneous information of diseases, genes, ontologies and phenotypes. DGP-PGTN can automatically and comprehensively capture the multiple latent interactions between diseases and genes, discover the causal relationship between them and is fully interpretable at the same time. We conduct comprehensive experiments and show that DGP-PGTN outperforms the state-of-the-art methods significantly on the task of disease–gene association prediction. Furthermore, DGP-PGTN can automatically learn the implicit relationship between diseases and genes without manually defining meta paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利松鼠完成签到 ,获得积分10
1秒前
1秒前
KCMd发布了新的文献求助20
2秒前
2秒前
wjx发布了新的文献求助10
3秒前
3秒前
船舵发布了新的文献求助10
3秒前
我是老大应助qingjiuhua采纳,获得10
4秒前
Lucas应助复杂梦安采纳,获得10
4秒前
dawei完成签到 ,获得积分10
5秒前
欣喜翠丝完成签到,获得积分10
5秒前
李爱国应助板栗采纳,获得10
5秒前
欣阳1021完成签到,获得积分10
5秒前
CodeCraft应助大野采纳,获得10
5秒前
椰子卷完成签到,获得积分10
6秒前
ds完成签到,获得积分10
6秒前
李健的粉丝团团长应助xumy采纳,获得10
6秒前
打打应助铲铲采纳,获得10
7秒前
天地一体完成签到,获得积分10
7秒前
科研通AI6应助lvzhechen采纳,获得10
7秒前
耿春丽完成签到 ,获得积分10
7秒前
欣喜翠丝发布了新的文献求助10
7秒前
共享精神应助zai采纳,获得10
7秒前
万能图书馆应助豆包_P12345采纳,获得10
8秒前
潇洒的水蓉完成签到,获得积分10
8秒前
血鸚鵡发布了新的文献求助20
8秒前
敏感雅香发布了新的文献求助10
9秒前
苗松发布了新的文献求助10
9秒前
方易烟完成签到,获得积分10
10秒前
飞快的从丹完成签到,获得积分10
10秒前
英俊的铭应助岁岁采纳,获得10
10秒前
科研通AI6应助ray采纳,获得10
11秒前
KCMd完成签到,获得积分10
11秒前
邱穗发布了新的文献求助10
11秒前
zhz完成签到,获得积分10
11秒前
hey应助Wayne采纳,获得10
12秒前
13秒前
14秒前
Rita完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745