End-to-end interpretable disease–gene association prediction

计算机科学 异构网络 图形 基因调控网络 机器学习 人工智能 联想(心理学) 计算生物学 基因 数据挖掘 理论计算机科学 遗传学 生物 电信 哲学 基因表达 无线网络 认识论 无线
作者
Yang Li,Zihou Guo,Keqi Wang,Xin Gao,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:21
标识
DOI:10.1093/bib/bbad118
摘要

Abstract Identifying disease–gene associations is a fundamental and critical biomedical task towards understanding molecular mechanisms, the diagnosis and treatment of diseases. It is time-consuming and expensive to experimentally verify causal links between diseases and genes. Recently, deep learning methods have achieved tremendous success in identifying candidate genes for genetic diseases. The gene prediction problem can be modeled as a link prediction problem based on the features of nodes and edges of the gene–disease graph. However, most existing researches either build homogeneous networks based on one single data source or heterogeneous networks based on multi-source data, and artificially define meta-paths, so as to learn the network representation of diseases and genes. The former cannot make use of abundant multi-source heterogeneous information, while the latter needs domain knowledge and experience when defining meta-paths, and the accuracy of the model largely depends on the definition of meta-paths. To address the aforementioned challenges above bottlenecks, we propose an end-to-end disease–gene association prediction model with parallel graph transformer network (DGP-PGTN), which deeply integrates the heterogeneous information of diseases, genes, ontologies and phenotypes. DGP-PGTN can automatically and comprehensively capture the multiple latent interactions between diseases and genes, discover the causal relationship between them and is fully interpretable at the same time. We conduct comprehensive experiments and show that DGP-PGTN outperforms the state-of-the-art methods significantly on the task of disease–gene association prediction. Furthermore, DGP-PGTN can automatically learn the implicit relationship between diseases and genes without manually defining meta paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助秋澄采纳,获得10
刚刚
刚刚
2秒前
xzn发布了新的文献求助10
2秒前
hahaha发布了新的文献求助10
2秒前
2秒前
青云冰城发布了新的文献求助10
3秒前
oo发布了新的文献求助10
3秒前
3秒前
不倒翁37发布了新的文献求助10
4秒前
cmdan完成签到,获得积分10
4秒前
蓝溺完成签到,获得积分10
5秒前
邵小庆发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
桐桐应助cc采纳,获得10
7秒前
等待吐司应助欢喜代萱采纳,获得10
7秒前
ss完成签到 ,获得积分10
7秒前
刘乐发布了新的文献求助10
7秒前
柳觅夏发布了新的文献求助10
7秒前
Lucas应助芜湖芜湖采纳,获得10
8秒前
HOOW发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
11秒前
cytheria发布了新的文献求助10
11秒前
时间的过客完成签到,获得积分10
11秒前
HesperLxy发布了新的文献求助10
11秒前
SciGPT应助天天玩采纳,获得10
13秒前
13秒前
NexusExplorer应助cc采纳,获得10
13秒前
李爱国应助千尺焰采纳,获得10
14秒前
666发布了新的文献求助10
15秒前
美好斓发布了新的文献求助10
15秒前
15秒前
zzz发布了新的文献求助30
17秒前
文献小白发布了新的文献求助10
17秒前
xxx发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961