亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coupling agricultural system models with machine learning to facilitate regional predictions of management practices and crop production

农业 农业工程 农业生产力 环境科学 种植 作物产量 精准农业 生产(经济) 种植制度 计算机科学 工程类 农学 生态学 宏观经济学 经济 生物
作者
Liujun Xiao,Guocheng Wang,Hangxin Zhou,Xiao Jin,Zhongkui Luo
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:17 (11): 114027-114027 被引量:14
标识
DOI:10.1088/1748-9326/ac9c71
摘要

Abstract Process-based agricultural system models are a major tool for assessing climate-agriculture-management interactions. However, their application across large scales is limited by computational cost, model uncertainty, and data availability, hindering policy-making for sustainable agricultural production at the scale meaningful for land management by farmers. Using the Agricultural Production System sIMulator (APSIM) as an example model, the APSIM model was run for 101 years from 1980 to 2080 in a typical cropping region (i.e., the Huang-Huai-Hai plain) of China. Then, machine learning (ML)-based models were trained to emulate the performance of the APSIM model and used to map crop production and soil carbon (which is a key indicator of soil health and quality) dynamics under a great number of nitrogen and water management scenarios. We found that ML-based emulators can accurately and quickly reproduce APSIM predictions of crop yield and soil carbon dynamics across the region under different spatial resolutions, and capture main processes driving APSIM predictions with much less input data. In addition, the emulators can be easily and quickly applied to identify optimal nitrogen management to achieve yield potential and sequester soil carbon across the region. The approach can be used for modelling other complex systems and amplifying the usage of agricultural system models for guiding agricultural management strategies and policy-making to address global environmental challenges from agriculture intensification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
1分钟前
Yikao完成签到 ,获得积分10
2分钟前
ZIJUNZHAO完成签到 ,获得积分10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
总是很简单完成签到 ,获得积分10
3分钟前
Ykaor完成签到 ,获得积分10
4分钟前
古铜完成签到 ,获得积分10
4分钟前
4分钟前
乐正文涛发布了新的文献求助10
4分钟前
ajing完成签到,获得积分10
4分钟前
QYQ完成签到 ,获得积分10
4分钟前
msk完成签到 ,获得积分10
4分钟前
乐正怡完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
FMHChan完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
7分钟前
铭铭完成签到 ,获得积分10
8分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
Attaa完成签到,获得积分10
11分钟前
11分钟前
木木发布了新的文献求助10
11分钟前
11分钟前
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
11分钟前
科研通AI6应助年轻的雁露采纳,获得30
11分钟前
11分钟前
BowieHuang应助冷酷的寒天采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557