Performance Prediction of an Axial Piston Pump With Increasing Severity of Leakage Fault in Single and Multiple Cylinders

泄漏(经济) 机械 波形 活塞泵 层流 材料科学 振幅 控制理论(社会学) 圆柱 声学 工程类 计算机科学 物理 机械工程 光学 电气工程 电压 宏观经济学 人工智能 经济 控制(管理)
作者
Rishabh Gupta,Ankur Miglani,Pavan Kumar Kankar
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASME International]
卷期号:145 (2) 被引量:8
标识
DOI:10.1115/1.4056026
摘要

Abstract As axial piston pumps (APP) become increasingly compact to meet the size, weight, and performance demands (high pressure ratings), they are prone to wear, and hence the leakage between the sliding parts, which run under tight tolerances. This leakage fault can degrade the pump's performance and limit its predictability and reliability. In this study, a simulation and mathematical model-based approach are presented to simulate the effect of increasing severity of leakage fault (increasing annular gap) in both single, and multiple cylinders simultaneously, on the pump performance. The Leakage is modeled as laminar flow past the uniform annular gap between the piston and cylinder. With a single faulty cylinder, as the wear (annular gap) increases the time-mean outlet flow and pressure of the pump remain constant until a critical threshold, and then reduce rapidly, leading to deterioration in the pump's volumetric efficiency. With increase in faulty cylinders this critical threshold shifts to lower magnitudes, and in the limit of more than four faulty cylinders this threshold saturates to a constant magnitude. The dynamic signal's data show that the increasing severity of leakage and increasing number of faulty cylinders modulate both the time signature and the amplitude fluctuations of the outlet pressure waveform due to the reduced flow in the discharge cycle. Further, FFT analysis of these dynamic signals, and the time-mean value of pressure and flow rate leakage fault diagnosis is presented to classify the pump's condition as either healthy or moderately faulty or severely faulty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郁乾完成签到,获得积分10
1秒前
壮观翩跹完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
jnngshan应助有机采纳,获得10
3秒前
3秒前
西海小甜豆完成签到,获得积分20
3秒前
ZFR完成签到,获得积分20
3秒前
zzzzzy完成签到 ,获得积分10
4秒前
4秒前
4秒前
雪sung发布了新的文献求助20
5秒前
5秒前
5秒前
这是谁完成签到,获得积分10
6秒前
6秒前
Orange应助April采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
Jasper应助lll采纳,获得10
8秒前
泽爷完成签到,获得积分10
8秒前
一毛钱买两颗糖完成签到,获得积分10
8秒前
9秒前
qiqi发布了新的文献求助10
9秒前
楚chu完成签到,获得积分10
9秒前
老中医发布了新的文献求助30
10秒前
蝶梦发布了新的文献求助10
10秒前
10秒前
小鱼要变咸完成签到,获得积分10
10秒前
10秒前
JR发布了新的文献求助10
11秒前
浚稚完成签到 ,获得积分10
11秒前
Casper完成签到,获得积分10
12秒前
文东木发布了新的文献求助10
12秒前
三叔应助何1采纳,获得10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144663
求助须知:如何正确求助?哪些是违规求助? 2796129
关于积分的说明 7818009
捐赠科研通 2452286
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627339
版权声明 601432