Driving forces of nitrogen use efficiency in Chinese croplands on county scale

氮气 环境科学 农业 稻草 农学 肥料 肥料 中国 地理 生物 生态学 化学 有机化学 考古
作者
Binhui Chen,Chenchen Ren,Chen Wang,Jiakun Duan,Stefan Reis,Baojing Gu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:316: 120610-120610 被引量:27
标识
DOI:10.1016/j.envpol.2022.120610
摘要

Nitrogen use efficiency (NUE, defined as the fraction of N input harvested as product) is an important indicator to understand nitrogen use and losses in croplands as an element of determining sustainable food production. China, as the country with the largest amount of nitrogen fertilizer use globally, research into NUE consistently finds it to be much lower than that in developed countries. Understanding the driving forces of the underlying causes of this low NUE is thus crucial to improve nitrogen use and reduce losses in China. Here we applied the CHANS model to estimate cropland NUE for over 2800 counties in China for the year 2017. Results showed that in most counties NUE ranged between 20% and 40%, while an NUE >50% was mainly found in Northeastern China, likely as a result of large-scale, modern agriculture operations. The source of N input and crop types significantly affected NUE in our assessment. Nitrogen deposition, straw recycling, and biological nitrogen fixation (BNF) could improve NUE, while chemical nitrogen fertilizer and manure inputs reduce NUE. Grain crops have a much higher NUE compared to vegetables, which are often over-fertilized. Moreover, NUE in Southern China is strongly influenced by natural factors such as temperature and precipitation. Specifically, NUE in the Yangtze River Delta (eastern coastal region of China) is associated with socio-economic factors including GDP and the degree of urbanization, while in North-central China, NUE is mainly determined by nitrogen input sources. These examples illustrate that approaches aiming at improving NUE need to be location-specific with consideration of multiple natural and socioeconomic factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小树苗发布了新的文献求助10
刚刚
H华ua应助想飞的猪采纳,获得10
刚刚
zxf发布了新的文献求助10
1秒前
1秒前
hadfunsix完成签到 ,获得积分10
1秒前
takiku发布了新的文献求助10
2秒前
CodeCraft应助zdtcv采纳,获得10
2秒前
4秒前
Bluebulu完成签到,获得积分10
5秒前
xuyingtao完成签到,获得积分10
5秒前
Orange应助比巴卜采纳,获得10
6秒前
zxf完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
qianhuxinyu发布了新的文献求助10
9秒前
Eid完成签到,获得积分10
9秒前
完美世界应助阿难采纳,获得10
9秒前
暴富发布了新的文献求助10
11秒前
SXR完成签到,获得积分10
11秒前
科研通AI5应助我行我素采纳,获得10
12秒前
呆萌小虾米完成签到,获得积分10
13秒前
13秒前
LL完成签到,获得积分10
13秒前
充电宝应助szcyxzh采纳,获得50
14秒前
14秒前
15秒前
眉间一把刀完成签到,获得积分10
16秒前
肉卷完成签到 ,获得积分10
17秒前
徐蝶发布了新的文献求助10
18秒前
LL发布了新的文献求助10
18秒前
无私妙菡发布了新的文献求助10
19秒前
搜集达人应助全ct采纳,获得10
19秒前
takiku完成签到,获得积分10
20秒前
20秒前
21秒前
lee发布了新的文献求助10
22秒前
sail完成签到,获得积分20
22秒前
aaa完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961