Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes

碳纳米管 催化作用 成核 纳米技术 材料科学 纳米尺度 原子单位 化学物理 纳米材料 手性(物理) 高分辨率透射电子显微镜 化学工程 化学 透射电子显微镜 有机化学 工程类 夸克 物理 量子力学 手征对称破缺 Nambu–Jona Lasinio模型
作者
Xue Zhao,Sida Sun,Feng Yang,Yan Li
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (23): 3334-3344 被引量:24
标识
DOI:10.1021/acs.accounts.2c00592
摘要

ConspectusKnowing how nanomaterials nucleate and dynamically evolve at the nanoscale is crucial to understanding and in turn controlling the structure and properties of a wide variety of materials, among which single-walled carbon nanotubes (SWCNTs) with chirality-dependent properties is a typical example. Catalyst takes a central role in guiding the SWCNT growth. An in-depth understanding of the growth mechanism of SWCNTs requires knowledge of the catalyst dynamic behavior during the chemical vapor deposition process, where real-time atomic-scale observations are needed. The high spatial, temporal, and energy resolution makes the state-of-the-art aberration-corrected environmental transmission electron microscope (ETEM) a superior tool for tracking the catalyst evolution and the SWCNT growth.Several key factors and processes, including the catalyst stability, carbon diffusion pathway, nucleation site, and growth modes of nanotubes, greatly influence the structure of SWCNTs. This Account summarizes our recent progress in the ETEM investigation of the dynamic catalyst behavior and nucleation of SWCNTs. We first compare the different growth modes of SWCNTs on two types of catalyst-stable solid intermetallic Co7W6 and unstable monometallic catalysts. Then we address the origin of different growth modes and chirality selectivity by revealing the atomic-scale stability and evolution of catalysts under carbon feed conditions and the observation of the in situ growth of SWCNTs on catalysts. We also discuss the catalyst-support interaction and the possible influence on SWCNT growth. In the end, we summarize the present achievements and future challenges.We carefully compare the difference in the ordinary Co catalyst and Co7W6 catalyst which has shown great chirality selectivity in SWCNT growth. Direct imaging by ETEM demonstrated that solid catalysts initiated the growth of SWCNTs with diameters smaller (dNT) than those of the catalyst particles (dNP) (dNT < dNP), whereas molten catalyst nanoparticles produced SWCNTs with similar diameters (dNT ≈ dNP). ETEM combined with in situ synchrotron X-ray absorption spectroscopy demonstrated that the Co7W6 catalyst maintained a solid stable structure under carbon feed conditions at 700-1000 °C, demonstrating the feasibility in acting as a structure template to grow SWCNTs. By contrast, the state and composition of the Co catalyst were changing during SWCNT growth. The near-surface lattice spacings of Co7W6 remained unchanged under carbon feed condition with carbon diffusion on the surface, whereas the solid Co catalyst underwent dynamic expansion and contraction due to carbon penetration into and precipitation out of Co nanoparticles. These two different pathways of carbon diffusion on or in catalysts indicate the distinctly different growth mechanisms of SWCNTs: the epitaxial growth of SWCNTs with specified chirality on the facets of Co7W6 nanocrystals and the nonselective growth of SWCNTs by the Co catalyst with Co/CoC3 as the active species. Besides the SWCNT-catalyst interface, the catalyst-support interface is also of importance in SWCNT growth. The atomic-scale information on catalyst dynamics provides a deep mechanistic understanding of SWCNT growth and will boost the development of the structure-controlled synthesis of SWCNTs and other nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余进步完成签到,获得积分10
刚刚
1秒前
简简单单发布了新的文献求助10
1秒前
清爽老九完成签到,获得积分10
1秒前
lsz发布了新的文献求助10
2秒前
4秒前
4秒前
晨曦完成签到,获得积分10
4秒前
东华帝君完成签到,获得积分10
5秒前
大力元霜完成签到,获得积分10
5秒前
完美世界应助赫赫采纳,获得10
5秒前
cccc完成签到 ,获得积分10
6秒前
霜降发布了新的文献求助10
7秒前
爆米花应助佩奇采纳,获得10
7秒前
7秒前
醉眠发布了新的文献求助10
8秒前
NexusExplorer应助赖风娇采纳,获得10
8秒前
12秒前
细心擎呢完成签到 ,获得积分10
13秒前
14秒前
霜降完成签到,获得积分10
14秒前
浮游应助YESKY采纳,获得10
15秒前
希望天下0贩的0应助星星采纳,获得10
16秒前
绝世大魔王完成签到 ,获得积分10
17秒前
17秒前
ping完成签到,获得积分10
17秒前
脑洞疼应助ZZZkn采纳,获得10
19秒前
19秒前
NikiJu完成签到,获得积分10
19秒前
hsy发布了新的文献求助10
20秒前
20秒前
HWei完成签到,获得积分10
21秒前
22秒前
勤奋帽子关注了科研通微信公众号
24秒前
卡皮巴拉完成签到,获得积分10
27秒前
yangyang完成签到 ,获得积分10
28秒前
Hello应助科研通管家采纳,获得10
29秒前
OoOo发布了新的文献求助10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968638
求助须知:如何正确求助?哪些是违规求助? 4225941
关于积分的说明 13161018
捐赠科研通 4013031
什么是DOI,文献DOI怎么找? 2195868
邀请新用户注册赠送积分活动 1209298
关于科研通互助平台的介绍 1123338