Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
yn完成签到,获得积分10
2秒前
2秒前
不安青牛应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
阔达紫青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
不安青牛应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
聪慧小霜应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Hui完成签到,获得积分10
4秒前
852应助科研通管家采纳,获得10
4秒前
wy.he应助科研通管家采纳,获得20
5秒前
wanci应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
鸣笛应助科研通管家采纳,获得20
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
爱笑的小羽毛完成签到,获得积分20
6秒前
无花果应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
华仔应助en采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
lzj应助科研通管家采纳,获得20
6秒前
研友_VZG7GZ应助阿良采纳,获得10
6秒前
铁柱完成签到 ,获得积分20
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589872
求助须知:如何正确求助?哪些是违规求助? 4004895
关于积分的说明 12399651
捐赠科研通 3681863
什么是DOI,文献DOI怎么找? 2029343
邀请新用户注册赠送积分活动 1062883
科研通“疑难数据库(出版商)”最低求助积分说明 948536