Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白英发布了新的文献求助10
刚刚
西瓜发布了新的文献求助50
刚刚
LJL发布了新的文献求助10
刚刚
小小鱼发布了新的文献求助10
刚刚
无尘泪完成签到,获得积分10
1秒前
123应助yjq采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
LYSM应助阿玖采纳,获得10
2秒前
陈隆完成签到,获得积分10
2秒前
果冻布丁完成签到,获得积分20
2秒前
2秒前
NexusExplorer应助zoe采纳,获得10
2秒前
YZ发布了新的文献求助10
3秒前
lhy完成签到,获得积分10
3秒前
小乔应助李*杰采纳,获得10
3秒前
4秒前
4秒前
飞翔的发布了新的文献求助10
4秒前
孤萧寒月关注了科研通微信公众号
4秒前
科研通AI6应助broccoli采纳,获得10
4秒前
香蕉觅云应助Adrenaline采纳,获得10
5秒前
张阳完成签到,获得积分10
5秒前
小西发布了新的文献求助30
5秒前
大模型应助紫易采纳,获得30
5秒前
hhh完成签到,获得积分10
5秒前
科研通AI6应助小恐龙采纳,获得10
5秒前
李健应助朝气采纳,获得10
5秒前
ee发布了新的文献求助10
5秒前
大胆愫发布了新的文献求助10
6秒前
6秒前
酸菜鱼火锅完成签到,获得积分10
6秒前
volcanoes完成签到,获得积分10
6秒前
一只鱼的故事完成签到,获得积分10
7秒前
scainiao完成签到,获得积分10
7秒前
xc发布了新的文献求助10
7秒前
补补卜卜完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700