Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的羿完成签到 ,获得积分10
1秒前
1秒前
洛洛完成签到,获得积分20
1秒前
drzz完成签到,获得积分10
1秒前
小晚风完成签到,获得积分10
1秒前
qu蛐完成签到 ,获得积分10
1秒前
clxgene完成签到,获得积分10
2秒前
高大奇迹完成签到,获得积分10
2秒前
3秒前
3秒前
小星星完成签到 ,获得积分10
3秒前
思源应助Mito2009采纳,获得10
3秒前
常常完成签到,获得积分10
3秒前
慕青应助啦啦采纳,获得10
4秒前
LIUJIE发布了新的文献求助10
4秒前
谦让的冰海完成签到,获得积分10
4秒前
4秒前
xie完成签到,获得积分10
4秒前
李健应助郑浩采纳,获得10
5秒前
kmkz发布了新的文献求助10
5秒前
田様应助敲敲采纳,获得10
6秒前
yao完成签到,获得积分10
6秒前
kingwill举报罗文权求助涉嫌违规
6秒前
6秒前
llopcop完成签到,获得积分10
6秒前
BulingQAQ完成签到,获得积分10
7秒前
Diudu发布了新的文献求助10
7秒前
8秒前
ifast完成签到 ,获得积分10
8秒前
8秒前
积极的明天完成签到 ,获得积分10
8秒前
善学以致用应助Mi酷采纳,获得10
9秒前
9秒前
哈哈完成签到,获得积分10
10秒前
xkirei完成签到,获得积分10
10秒前
AAA完成签到,获得积分10
10秒前
dongdong发布了新的文献求助10
10秒前
wuludie应助wualexandra采纳,获得10
10秒前
鱼大大发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470973
求助须知:如何正确求助?哪些是违规求助? 4573732
关于积分的说明 14340942
捐赠科研通 4500870
什么是DOI,文献DOI怎么找? 2466059
邀请新用户注册赠送积分活动 1454266
关于科研通互助平台的介绍 1428936