Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wucl1990采纳,获得10
刚刚
刚刚
Sunrise完成签到,获得积分10
1秒前
苹果沛柔发布了新的文献求助10
1秒前
清爽的水蓝完成签到,获得积分10
1秒前
落叶完成签到,获得积分10
2秒前
LLL20240701发布了新的文献求助30
2秒前
wanci应助ciooli采纳,获得10
3秒前
小二郎应助义气的海瑶采纳,获得10
3秒前
丘比特应助如意书包采纳,获得10
3秒前
Ridley发布了新的文献求助10
3秒前
4秒前
隐形曼青应助lw采纳,获得10
4秒前
Lucas应助Serenity采纳,获得10
5秒前
无敌小帅发布了新的文献求助30
5秒前
香蕉觅云应助lvsehx采纳,获得10
5秒前
对苏完成签到,获得积分10
7秒前
7秒前
march应助Yellue采纳,获得20
7秒前
8秒前
心灵美复天完成签到,获得积分10
8秒前
Tan3837完成签到,获得积分10
9秒前
冷酷仙境的羊男完成签到 ,获得积分10
9秒前
9秒前
活泼一凤完成签到,获得积分10
9秒前
9秒前
10秒前
如初发布了新的文献求助10
10秒前
bkagyin应助小妮采纳,获得10
10秒前
肚子圆圆的完成签到 ,获得积分10
10秒前
程星宇发布了新的文献求助10
11秒前
bkagyin应助315947采纳,获得30
11秒前
烂漫的汲完成签到,获得积分10
11秒前
12秒前
精明的橘子完成签到 ,获得积分10
12秒前
啾啾完成签到,获得积分10
12秒前
ciooli完成签到,获得积分10
12秒前
xia_完成签到,获得积分10
12秒前
研友_8Raw2Z发布了新的文献求助10
12秒前
kk发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620