Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研顺利完成签到 ,获得积分10
1秒前
1秒前
彭于晏应助发多多采纳,获得10
1秒前
蜗牛123发布了新的文献求助10
3秒前
3秒前
3秒前
赘婿应助David采纳,获得10
3秒前
4秒前
肥皂剧发布了新的文献求助10
4秒前
susu发布了新的文献求助10
5秒前
丰富的莛完成签到,获得积分10
5秒前
916应助nabla采纳,获得10
5秒前
李健应助TT提采纳,获得10
7秒前
ww发布了新的文献求助10
7秒前
杨梅关注了科研通微信公众号
7秒前
8秒前
七个小矮人完成签到,获得积分10
9秒前
丰富的莛发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
kuichen完成签到,获得积分10
9秒前
泓凯骏完成签到 ,获得积分10
10秒前
10秒前
田様应助猪猪hero采纳,获得10
10秒前
12秒前
所所应助fordream采纳,获得10
13秒前
CipherSage应助fordream采纳,获得10
13秒前
14秒前
今后应助含糊的冰安采纳,获得10
15秒前
BINGBING1230发布了新的文献求助30
15秒前
15秒前
LHF发布了新的文献求助10
17秒前
酷波er应助开心不评采纳,获得10
18秒前
18秒前
脑洞疼应助BINGBING1230采纳,获得10
19秒前
杨梅发布了新的文献求助10
19秒前
Wang完成签到,获得积分10
20秒前
21秒前
21秒前
肥皂剧完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315