Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助高高碧采纳,获得10
1秒前
ZSR完成签到,获得积分10
2秒前
雪雪完成签到 ,获得积分10
2秒前
完美世界应助xxxx采纳,获得10
2秒前
2秒前
文艺白晴发布了新的文献求助10
3秒前
李健的小迷弟应助CQ采纳,获得10
3秒前
3秒前
大力薯片完成签到 ,获得积分10
3秒前
3秒前
粥游天下发布了新的文献求助20
4秒前
wy.he应助自由的雅容采纳,获得10
4秒前
4秒前
4秒前
yuanpiao完成签到,获得积分10
5秒前
9Songs发布了新的文献求助10
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
海昌完成签到 ,获得积分10
6秒前
6秒前
Lucas应助典雅的俊驰采纳,获得10
7秒前
7秒前
椰壳发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
jc发布了新的文献求助10
8秒前
自信项链发布了新的文献求助20
9秒前
luping28发布了新的文献求助10
9秒前
Able_sci完成签到,获得积分10
9秒前
9秒前
vvvvyl完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
香蕉觅云应助yyyg采纳,获得10
11秒前
11秒前
空啊空完成签到 ,获得积分10
11秒前
vvvvyl发布了新的文献求助10
11秒前
曾经以亦发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573