Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
焦爽发布了新的文献求助10
刚刚
zyw发布了新的文献求助10
刚刚
潇潇发布了新的文献求助10
刚刚
3molcao完成签到,获得积分10
1秒前
1秒前
窝恁叠发布了新的文献求助10
1秒前
ElbingX完成签到,获得积分10
2秒前
YH完成签到,获得积分10
2秒前
向日葵完成签到,获得积分10
2秒前
科研通AI6应助陈秋采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
赘婿应助啦啦采纳,获得10
2秒前
2秒前
sangsang发布了新的文献求助10
2秒前
丫丫发布了新的文献求助10
3秒前
zhangxiaoqing发布了新的文献求助10
3秒前
4秒前
爱撒娇的沛蓝完成签到,获得积分10
4秒前
步步发布了新的文献求助30
4秒前
李健应助LUCA采纳,获得10
4秒前
5秒前
tongtong555完成签到 ,获得积分10
6秒前
6秒前
充电宝应助zhangyida采纳,获得10
6秒前
6秒前
xu完成签到,获得积分10
6秒前
无花果应助月与海采纳,获得10
6秒前
7秒前
Owen应助Yaaaaaa采纳,获得10
7秒前
孤独凝芙发布了新的文献求助24
8秒前
强健的幻丝完成签到,获得积分20
8秒前
CodeCraft应助粥粥采纳,获得10
8秒前
9秒前
李爱国应助和谐的路灯采纳,获得10
9秒前
6666发布了新的文献求助200
9秒前
酷波er应助xxx采纳,获得10
9秒前
9秒前
zyw完成签到,获得积分10
9秒前
风中沂完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233