亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep anomaly detection on set data: Survey and comparison

异常检测 计算机科学 人工智能 数据挖掘 深度学习 嵌入 数据集 点云 模式识别(心理学) 超参数 机器学习
作者
Michaela Mašková,Matěj Zorek,Tomáš Pevný,Václav Šmídl
出处
期刊:Pattern Recognition [Elsevier]
卷期号:151: 110381-110381
标识
DOI:10.1016/j.patcog.2024.110381
摘要

Detecting anomalous samples in set data is a problem attracting increased interest due to novel modalities, such as point-cloud data produced by lidars. Novel methods including those based on deep neural networks are often tuned for a single purpose prohibiting intuition of how relevant they are for another purpose or application domains. The aim of this survey is to: (i) review elementary concepts of anomaly detection of set data, (ii) identify the building blocks of deep anomaly detectors, and (iii) analyze the impact of these blocks on performance. The impact is studied in a large experimental comparison on a variety of benchmark datasets. The results reveal that the main factor determining the performance is the type of anomalies in the dataset. While deep methods embedding the whole set to a single fixed vector perform well on point cloud data, the methods embedding each feature vector independently are better for datasets from multi-instance learning. Moreover, sophisticated methods utilizing transformer blocks are frequently inferior to simple models with properly optimized hyperparameters. An independent factor in performance is the cardinality of sets, the proper treatment of which remains an open problem, as the existing analytical solution was found to be inaccurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流湎发布了新的文献求助10
刚刚
1秒前
可爱傥发布了新的文献求助10
3秒前
科研通AI6应助酷酷飞机采纳,获得10
4秒前
9秒前
科研通AI6应助阿楠采纳,获得10
12秒前
菠萝吹雪发布了新的文献求助10
15秒前
万能图书馆应助newplayer采纳,获得10
15秒前
15秒前
噼里啪啦发布了新的文献求助20
18秒前
NexusExplorer应助nn采纳,获得10
22秒前
27秒前
祖宗发布了新的文献求助10
31秒前
32秒前
眯眯眼的龙猫完成签到,获得积分10
36秒前
36秒前
来是come去是go完成签到,获得积分10
45秒前
46秒前
科研通AI6应助思晗采纳,获得10
49秒前
49秒前
桃桃发布了新的文献求助10
49秒前
噼里啪啦完成签到,获得积分10
50秒前
51秒前
qiao发布了新的文献求助10
55秒前
桃桃完成签到,获得积分10
56秒前
58秒前
58秒前
故城完成签到 ,获得积分10
1分钟前
hhan完成签到 ,获得积分10
1分钟前
流湎发布了新的文献求助10
1分钟前
乐乐应助西柚采纳,获得10
1分钟前
流湎完成签到,获得积分20
1分钟前
英姑应助流湎采纳,获得10
1分钟前
鳄鱼山先生完成签到,获得积分10
1分钟前
相俊杰发布了新的文献求助10
1分钟前
土豆子完成签到,获得积分10
1分钟前
1分钟前
天天快乐应助lnx采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463125
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14312042
捐赠科研通 4493786
什么是DOI,文献DOI怎么找? 2461874
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426069