An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:13
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhh完成签到,获得积分10
刚刚
刚刚
黄豆发布了新的文献求助10
刚刚
1秒前
1秒前
帅气豌豆完成签到,获得积分10
3秒前
草没味完成签到,获得积分10
3秒前
怕孤单完成签到,获得积分10
3秒前
moxi摩西发布了新的文献求助10
4秒前
东方翰发布了新的文献求助10
5秒前
5秒前
缥缈飞双发布了新的文献求助30
5秒前
汉堡包应助静听松风寒采纳,获得10
5秒前
我是老大应助ong采纳,获得10
7秒前
MYY发布了新的文献求助10
7秒前
8秒前
仁爱糖豆发布了新的文献求助10
8秒前
爱小尹完成签到,获得积分10
9秒前
呆呆颖完成签到 ,获得积分10
9秒前
阿狸完成签到,获得积分10
10秒前
袁不评发布了新的文献求助10
10秒前
11秒前
jhz完成签到,获得积分10
12秒前
12秒前
深情安青应助瘦瘦冰凡采纳,获得10
12秒前
迷路啤酒完成签到,获得积分20
12秒前
12秒前
CipherSage应助李晓凤采纳,获得10
14秒前
席河木鱼完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
草莓奶冻完成签到,获得积分10
17秒前
小朱完成签到,获得积分10
18秒前
18秒前
卞国强发布了新的文献求助10
18秒前
诺克萨斯完成签到,获得积分10
19秒前
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422