亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:13
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强紫山发布了新的文献求助10
2秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
25秒前
Akim应助ceeray23采纳,获得20
31秒前
完美世界应助ceeray23采纳,获得20
34秒前
35秒前
精明浩然应助ceeray23采纳,获得20
36秒前
甜蜜乐松发布了新的文献求助10
39秒前
关关过应助ceeray23采纳,获得20
39秒前
Criminology34举报Se1fer求助涉嫌违规
39秒前
Criminology34应助ceeray23采纳,获得20
43秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
十二倍根号二完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
jason完成签到,获得积分0
1分钟前
1分钟前
庄二豆完成签到,获得积分10
1分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得20
2分钟前
2分钟前
英姑应助ceeray23采纳,获得20
2分钟前
Zx_1993应助ceeray23采纳,获得20
2分钟前
万能图书馆应助keke采纳,获得10
2分钟前
老福贵儿应助ceeray23采纳,获得20
2分钟前
搜集达人应助ceeray23采纳,获得20
2分钟前
英俊的铭应助ceeray23采纳,获得20
2分钟前
2分钟前
keke发布了新的文献求助10
2分钟前
moonlight完成签到,获得积分10
2分钟前
无聊的怀绿完成签到 ,获得积分10
2分钟前
希望天下0贩的0应助Bokuto采纳,获得10
2分钟前
大模型应助keke采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691039
关于积分的说明 14866783
捐赠科研通 4707670
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276