An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:7
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hector完成签到,获得积分10
刚刚
yoyo发布了新的文献求助10
1秒前
思源应助zzh采纳,获得10
1秒前
小蘑菇应助huodian4采纳,获得10
1秒前
华仔应助Thomas采纳,获得10
1秒前
标致乐双完成签到 ,获得积分10
2秒前
熊大帅完成签到,获得积分10
3秒前
wrf3发布了新的文献求助10
3秒前
anki发布了新的文献求助10
4秒前
4秒前
cjl0413发布了新的文献求助10
5秒前
5秒前
Yule发布了新的文献求助10
6秒前
6秒前
可爱的函函应助yemiao采纳,获得10
7秒前
复杂勒完成签到,获得积分10
7秒前
小小应助YW采纳,获得10
7秒前
7秒前
9秒前
9秒前
wang发布了新的文献求助10
10秒前
orixero应助shadowj1020采纳,获得10
10秒前
白鹭发布了新的文献求助10
10秒前
默默的奇迹完成签到,获得积分20
11秒前
xxfsx应助enen采纳,获得10
11秒前
12秒前
hhh完成签到 ,获得积分10
12秒前
12秒前
小婷发布了新的文献求助10
12秒前
XinG完成签到,获得积分10
13秒前
pcr163应助Unlung采纳,获得200
13秒前
14秒前
anders完成签到 ,获得积分10
15秒前
wins完成签到,获得积分10
15秒前
zzh发布了新的文献求助10
15秒前
科研通AI5应助周杰采纳,获得30
15秒前
怎么又困了完成签到,获得积分10
16秒前
霸气若男发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153679
求助须知:如何正确求助?哪些是违规求助? 4349269
关于积分的说明 13541565
捐赠科研通 4191976
什么是DOI,文献DOI怎么找? 2299237
邀请新用户注册赠送积分活动 1299236
关于科研通互助平台的介绍 1244260