An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:13
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rainy完成签到,获得积分10
刚刚
1秒前
jin发布了新的文献求助30
1秒前
英姑应助万海采纳,获得10
2秒前
付小源完成签到,获得积分10
2秒前
文具盒发布了新的文献求助10
2秒前
一定accept完成签到 ,获得积分10
3秒前
3秒前
3秒前
天天快乐应助hongxian采纳,获得10
3秒前
666完成签到,获得积分10
3秒前
科研通AI6应助Xxxxzzz采纳,获得10
3秒前
carrieschen发布了新的文献求助10
4秒前
ww发布了新的文献求助10
4秒前
尊敬的笑翠完成签到,获得积分10
4秒前
彪壮的飞扬完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
MrDuan完成签到,获得积分10
5秒前
搜集达人应助my196755采纳,获得10
6秒前
刘晴晴完成签到,获得积分10
6秒前
pengGuo完成签到,获得积分20
6秒前
xinlei2023完成签到,获得积分10
6秒前
阿会完成签到 ,获得积分10
8秒前
8秒前
9秒前
丘比特应助hhhhhhhhhh采纳,获得10
10秒前
liumenghan发布了新的文献求助30
10秒前
carrieschen完成签到,获得积分10
10秒前
10秒前
David发布了新的文献求助10
10秒前
微零微发布了新的文献求助10
11秒前
11秒前
JeromineJade完成签到,获得积分10
13秒前
徐靖依发布了新的文献求助10
13秒前
shipcap完成签到,获得积分20
13秒前
星星完成签到,获得积分10
13秒前
14秒前
lily发布了新的文献求助100
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810