An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:7
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只如初发布了新的文献求助10
1秒前
kirirto完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
黄紫红蓝发布了新的文献求助10
3秒前
4秒前
4秒前
anna1992发布了新的文献求助10
5秒前
5秒前
6秒前
cquank发布了新的文献求助10
6秒前
SYLH应助dongli6536采纳,获得10
6秒前
water完成签到,获得积分10
7秒前
上官若男应助shine采纳,获得10
7秒前
战战兢兢完成签到 ,获得积分10
7秒前
7秒前
Shinewei完成签到,获得积分10
7秒前
开心蘑菇应助自由的无色采纳,获得30
8秒前
fff完成签到,获得积分10
8秒前
9秒前
小鱼医生发布了新的文献求助10
9秒前
jyu发布了新的文献求助10
9秒前
10秒前
10秒前
xiejinhui发布了新的文献求助10
11秒前
kiki完成签到 ,获得积分10
11秒前
铁甲小宝发布了新的文献求助10
11秒前
Shinewei发布了新的文献求助10
11秒前
12秒前
12秒前
久9完成签到 ,获得积分10
14秒前
14秒前
cquank完成签到,获得积分10
15秒前
ZoraZeng完成签到,获得积分10
15秒前
15秒前
虚心的寒梦完成签到,获得积分10
16秒前
炫哥IRIS完成签到,获得积分10
16秒前
牧童完成签到,获得积分10
16秒前
HenryXiao发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650