An unsupervised machine learning approach for ground‐motion spectra clustering and selection

人工智能 聚类分析 机器学习 背景(考古学) 自编码 计算机科学 无监督学习 人工神经网络 光谱聚类 基本事实 模式识别(心理学) 特征(语言学) 地理 语言学 哲学 考古
作者
Robert Bailey Bond,Pu Ren,Jerome F. Hajjar,Hao Sun
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (3): 1107-1124 被引量:7
标识
DOI:10.1002/eqe.4062
摘要

Abstract Clustering analysis of sequence data continues to address many applications in engineering design, aided with the rapid growth of machine learning in applied science. This paper presents an unsupervised machine learning algorithm to extract defining characteristics of earthquake ground‐motion spectra, also called latent features, to aid in ground‐motion selection (GMS). In this context, a latent feature is a low‐dimensional machine‐discovered spectral characteristic learned through nonlinear relationships of a neural network autoencoder. Machine discovered latent features can be combined with traditionally defined intensity measures and clustering can be performed to select a representative subgroup from a large ground‐motion suite. The objective of efficient GMS is to choose characteristic records representative of what the structure will probabilistically experience in its lifetime. Three examples are presented to validate this approach, including the use of synthetic and field recorded ground‐motion datasets. The presented deep embedding clustering of ground‐motion spectra has three main advantages: (1) defining characteristics that represent the sparse spectral content of ground motions are discovered efficiently through training of the autoencoder, (2) domain knowledge is incorporated into the machine learning framework with conditional variables in the deep embedding scheme, and (3) the method results in a ground‐motion subgroup that is more representative of the original ground‐motion suite compared to traditional GMS techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
阿龙完成签到,获得积分10
1秒前
香蕉觅云应助凌云采纳,获得10
3秒前
3秒前
乐乐应助陈肖楠采纳,获得10
3秒前
彭于晏应助sssshhh采纳,获得10
3秒前
aa完成签到,获得积分10
3秒前
3秒前
可爱的函函应助Lei采纳,获得10
4秒前
小二郎应助帅气小猫咪采纳,获得10
4秒前
4秒前
糊涂涂完成签到,获得积分10
4秒前
大个应助飞飞采纳,获得10
5秒前
5秒前
博思好行发布了新的文献求助10
5秒前
大白薯完成签到,获得积分10
6秒前
6秒前
文青完成签到,获得积分10
6秒前
微笑笑萍发布了新的文献求助10
6秒前
花花完成签到,获得积分10
7秒前
风中的听白完成签到 ,获得积分10
7秒前
7秒前
甜甜亦丝发布了新的文献求助10
7秒前
7秒前
万能图书馆应助高媛采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
哭泣青烟完成签到 ,获得积分10
8秒前
8秒前
ljz910005发布了新的文献求助20
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
震动的嘉懿完成签到 ,获得积分20
9秒前
ShuY发布了新的文献求助10
9秒前
一二发布了新的文献求助30
9秒前
英姑应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
CHINA_C13发布了新的文献求助10
9秒前
em0应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403