Local and Long-range Convolutional LSTM Network: A novel multi-step wind speed prediction approach for modeling local and long-range spatial correlations based on ConvLSTM

计算机科学 风速 航程(航空) 风力发电 空间分析 卷积(计算机科学) 残余物 加速 空间相关性 编码器 人工智能 算法 人工神经网络 气象学 电信 统计 数学 工程类 物理 复合材料 电气工程 材料科学 操作系统
作者
Mo Yu,Tao Bai,Xuewei Li,Zhiqiang Liu,Wei Xiong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107613-107613
标识
DOI:10.1016/j.engappai.2023.107613
摘要

Accurate wind speed prediction is crucial for enhancing the stability and economic efficiency of power system operation, particularly in wind power grid integration. However, existing methods face challenges as they fail to explicitly model local and long-range spatial correlations simultaneously, thereby limiting the performance of wind speed prediction to a certain extent. To overcome these challenges, this study develops a novel method, namely, LLConvLSTM, from the perspective of modeling local and long-range spatial correlations in wind speed, which leverages Deformable Convolution V2 and Coordinate Attention for multi-step spatiotemporal wind speed prediction. A ConvLSTM encoder–decoder architecture is designed for end-to-end spatiotemporal wind speed prediction. The Residual Deformable Convolution Module (RDCM) increases additional offsets and modulation scales in the spatial sampling locations, enhancing the capability to capture local spatial correlations. Dense Coordinate Attention Module (DCAM) embeds spatial positional information into the channel attention. DCAM improves the representability of long-range spatial correlations. Experimental results based on wind speed data from 253 virtual wind turbines demonstrate that the proposed approach significantly outperforms existing methods throughout the entire year and months. Moreover, the proposed method achieves Mean Squared Error (MSE) of 0.1199, 0.3446 and 0.5798 for multi-step wind speed prediction, representing reductions of 22.47% to 40.91% compared with existing methods. These findings highlight the significance of modeling local and long-range spatial correlations in enhancing the accuracy and stability of wind speed prediction. Future research will design a universal method capable of handling turbine data from any location and emphasize long-term forecasting in wind speed prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高发发布了新的文献求助10
1秒前
桐桐应助Wang采纳,获得10
2秒前
朴实夏波完成签到,获得积分10
2秒前
JamesPei应助Gallager采纳,获得10
3秒前
在水一方应助冷艳的一区采纳,获得10
3秒前
于早上完成签到,获得积分10
3秒前
3秒前
傲娇的毛毛虫完成签到 ,获得积分10
4秒前
酷波er应助阿甲采纳,获得10
4秒前
Owen应助欢呼小松鼠采纳,获得10
4秒前
豆豆发布了新的文献求助10
4秒前
6秒前
11秒前
11秒前
年轻半雪完成签到,获得积分10
11秒前
13秒前
15秒前
15秒前
傻子与白痴完成签到,获得积分20
16秒前
Ava应助耍酷的白山采纳,获得10
16秒前
17秒前
18秒前
18秒前
阿甲发布了新的文献求助10
19秒前
可爱的函函应助minya采纳,获得10
21秒前
雨前知了完成签到,获得积分10
21秒前
热情冰凡关注了科研通微信公众号
22秒前
22秒前
wenlin发布了新的文献求助10
22秒前
Akim应助XIAOMUMU采纳,获得10
22秒前
星辰大海应助祗想静静嘚采纳,获得10
23秒前
23秒前
25秒前
xc1234关注了科研通微信公众号
25秒前
善学以致用应助张张采纳,获得10
26秒前
露露发布了新的文献求助10
26秒前
28秒前
28秒前
熊11发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821