软骨内骨化
压电1
骨关节炎
软骨发生
机械转化
软骨
软骨细胞
硫氧化物9
细胞生物学
机械敏感通道
内分泌学
解剖
内科学
医学
生物
基因表达
病理
遗传学
基因
离子通道
受体
替代医学
作者
Laura Brylka,Assil‐Ramin Alimy,Miriam Tschaffon,Shan Jiang,Tobias M. Ballhause,Anke Baranowsky,Simon von Kroge,Julian Delsmann,Eva Pawlus,Kian Eghbalian,Klaus Püschel,Astrid Schoppa,Melanie Haffner‐Luntzer,David J. Beech,Frank Timo Beil,Michael Amling,Johannes Keller,Anita Ignatius,Timur Yorgan,Tim Rolvien,Thorsten Schinke
出处
期刊:Bone research
[Springer Nature]
日期:2024-02-23
卷期号:12 (1)
被引量:13
标识
DOI:10.1038/s41413-024-00315-x
摘要
Abstract Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 ( Piezo1 Col2a1Cre ), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1 Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1 Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.
科研通智能强力驱动
Strongly Powered by AbleSci AI