亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transcriptomic Signature and Functional Abnormalities of Bone Marrow Mesenchymal Stromal Cells Mediate Disease Progression of Myelodysplastic/Myeloproliferative Neoplasms

间充质干细胞 慢性粒单核细胞白血病 骨髓 造血 间质细胞 骨髓增生性肿瘤 癌症研究 川地34 生物 骨髓增生异常综合症 国际预后积分系统 转录组 祖细胞 骨髓纤维化 干细胞 免疫学 基因 遗传学 基因表达
作者
Zhiyong Poon,John F. Ouyang,Alice M.S. Cheung,Xianqun Fan,Vaidehi Krishnan,William Ying Khee Hwang,Hein Than
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 5618-5618
标识
DOI:10.1182/blood-2023-188426
摘要

Background Mesenchymal stromal cells (MSC) are vital components of the bone marrow (BM) microenvironment niche and regulate hematopoietic stem and progenitor cell (HSPC) activity. While HSPC harbor primary disease driver mutations, MSC in myelodysplastic syndrome and myeloproliferative neoplasm (MDS/MPN) have been shown to influence the emergence and selection of leukemic clones and disease progression. However, it remains unclear if there are specific functional characteristics or genetic signals of MSC that interact with HSPC at different stages of disease progression. We examined BM samples from MDS/MPN patients with high rate of leukemic transformation in less than 2 years (HR) versus those with stable disease for 5 years (SD), to investigate the phenotypic differentiation, functional characteristics, and transcriptomic profiles of MSC and the HSPC counterparts. Methods We obtained BM samples at diagnosis and follow-up from MDS/MPN patients including chronic myelomonocytic leukemia (CMML) treated at Singapore General Hospital. We studied 5 HR and 13 SD patient samples to compare against 5 healthy donor samples. MSC were derived in MesenCult-ACF media (StemCell Technologies), and phenotypic characterization was done after 1-2 passages. HSPC were subjected to co-culture expansion with MSC in MyeloCult-H5100 for 7 days, and long-term culture-initiating cell assays (LTC-IC) using MSC as feeder cells for 6 weeks. Total RNA extracted from MSC and HSPC were subjected to bulk and single-cell RNA sequencing (scRNA-Seq) (10X Genomics platform). Principal component analysis (PCA) was used for the uniform manifold approximation and projection (UMAP). Gene set enrichment analysis (GSEA) was performed on differentially expressed genes to examine canonical signaling pathways. Cellchat algorithm was applied to predict intercellular communication between MSC and HSPC using scRNA-Seq data. Results Baseline clinical variables for the international prognostic scoring system (IPSS) including age at diagnosis, myeloblast percentage and cytogenetics were not significantly different between HR and SD patients. Decreased osteogenic and chondrogenic differentiation, but relatively preserved adipogenic differentiation capacity was observed in all MDS/MPN MSC samples. A significantly lower yield of CD34+ CD38- primitive HSPC with myeloid skewing was observed in the co-culture experiments with MDS/MPN MSC, compared to healthy MSC. Pre-treatment of SD-MSC feeder with the hypomethylating agent 5-azacytidine improved the clonogenic potential of the corresponding co-cultured HSPC, but did not restore the HSPC colony yield with HR-MSC feeder. Unbiased PCA of bulk RNA-Seq data demonstrated greater clustering of HR-MSC, while SD and healthy MSC overlapped significantly. Genes associated with mesenchymal multipotency and differentiation (PODXL20, FOXQ122, SERPINA923) were generally downregulated in MDS/MPN MSC, likely attributed to promoter hypermethylation. Significant differential upregulation of CD74 and IL-6 expression was observed in HR-MSC, which suggested a uniquely enriched inflammatory signature. GSEA results showed that pathways associated with G2M cell cycle checkpoint, DNA repair, glycolysis, and response to azacytidine were suppressed in HR-MSC. UMAP on scRNA-Seq data of longitudinal MSC samples identified distinct clustering of HR-MSC at disease progression. Cell-cell interaction analysis predicted a strong communication between collagen-encoding genes (COL1A1 and COL1A2) in HR-MSC at diagnosis and CD44, a negative regulator of HSPC proliferation, and the interaction was further enhanced at disease progression (Figure 1). Ongoing analysis of downstream gene expression changes and secretome profile of HSPC in MDS/MPN MSC-based in-vivo scaffold models will be presented. Conclusion Together, our data point towards a degree of co-development and communication between MSC and HSPC during disease progression of MDS/MPN. Further characterization of the unique functional and transcriptomic signatures in MSC may help to optimize disease prognostication and identify novel therapeutic targets in MDS/MPN patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Raunio发布了新的文献求助10
9秒前
16秒前
29秒前
32秒前
SiboN发布了新的文献求助10
36秒前
37秒前
酷炫灰狼发布了新的文献求助10
42秒前
44秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
51秒前
55秒前
多乐多发布了新的文献求助10
58秒前
1分钟前
比格大王完成签到,获得积分10
1分钟前
1分钟前
tongtong12345发布了新的文献求助40
1分钟前
1分钟前
冷静尔芙发布了新的文献求助10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
2分钟前
今后应助求求好心人采纳,获得10
2分钟前
潇洒诗槐完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
潇洒诗槐发布了新的文献求助10
2分钟前
温暖的乐蓉完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
长尾巴的人类完成签到,获得积分10
2分钟前
2分钟前
ada发布了新的文献求助10
3分钟前
比格大王发布了新的文献求助20
3分钟前
所所应助郭楠楠采纳,获得10
3分钟前
Lucas应助郭楠楠采纳,获得10
3分钟前
Hello应助郭楠楠采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
共享精神应助潇洒诗槐采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359