亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of Extreme Learning Machine Based on Improved Beetle Antennae Search for Slot Die Coating Prediction

涂层 极限学习机 计算机科学 局部最优 非线性系统 算法 人工智能 选择(遗传算法) 数学优化 数学 材料科学 人工神经网络 物理 量子力学 复合材料
作者
Haonan Yang,Ding Liu,Jun-Chao Ren
标识
DOI:10.1109/ccdc58219.2023.10326797
摘要

In the actual production of slot die coating, the minimum coating thickness and the maximum substrate moving speed could only be judged by production experience, and there was no accurate prediction model due to the nonlinear characteristics of fluid motion. Therefore, building a reasonable and efficient prediction model for slot die coating is now an urgent and challenging task. In this paper, an optimized extreme learning machine (ELM) based on improved beetle antennae search (IBAS) algorithm is proposed for slot die coating prediction. The optimized ELM model can well learn the nonlinear characteristics of the system and make accurate predictions, thus solving the traditional inaccurate empirical judgment. As the prediction accuracy of ELM depends on the selection of weights and biases, the IBAS optimization algorithm is used to quickly search for the optimal value of weights and biases in the ELM network. IBAS algorithm improves the generation mechanism of antennae on the basis of the original algorithm, so that the algorithm can converge quickly. At the same time, the search strategy of the algorithm is improved to avoid falling into the local optimal solution. By predicting the production data of slit coating, the feasibility and effectiveness of IBAS-ELM model are proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王大纯完成签到,获得积分20
9秒前
9秒前
量子星尘发布了新的文献求助10
18秒前
39秒前
Dreamer.发布了新的文献求助10
45秒前
汉堡包应助科研实习生采纳,获得10
53秒前
59秒前
1分钟前
1分钟前
1分钟前
牛八先生完成签到,获得积分10
1分钟前
烟花应助Dreamer.采纳,获得10
1分钟前
Asura完成签到,获得积分10
1分钟前
1分钟前
RR发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI6应助哈哈哈采纳,获得10
1分钟前
RR完成签到,获得积分10
1分钟前
1分钟前
Hodlumm发布了新的文献求助10
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
1分钟前
1分钟前
无产阶级科学者完成签到,获得积分10
1分钟前
云梦完成签到,获得积分10
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
文艺易蓉发布了新的文献求助10
2分钟前
彭于晏应助文艺易蓉采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
Yan发布了新的文献求助10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587