Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants

高光谱成像 均方误差 遥感 多光谱图像 环境科学 卫星 背景(考古学) 数据集 计算机科学 人工智能 数学 统计 地质学 古生物学 工程类 航空航天工程
作者
Liwei Yao,Mingjie Xu,Yihui Liu,Ruiqing Niu,Xueling Wu,Yingxu Song
出处
期刊:Ecological Indicators [Elsevier]
卷期号:158: 111416-111416 被引量:14
标识
DOI:10.1016/j.ecolind.2023.111416
摘要

The evolution of hyperspectral remote sensing and artificial intelligence technologies has led to a surge in their application for predicting Soil Heavy Metal Concentrations (SHMC). Nevertheless, the preponderance of existing research within this sphere centers around data procured from ground-based and airborne hyperspectral sources. Studies that employ satellite-based methodologies typically rely on medium spatial resolution hyperspectral or multispectral satellite data. The application of high spatial and spectral resolution satellite data, such as that obtained from GaoFen-5 (GF-5), remains conspicuously underexplored. Furthermore, the impact of geographical environmental factors (GEFs) on the accuracy of predictions has been infrequently considered. In the context of this backdrop, the present study introduces stacking models designed to estimate SHMC. This approach integrates reflectance spectral features (SFs) derived from GF-5 hyperspectral imagery and GEFs, including topography and pollution sources. The results demonstrate a notable improvement in the predictive accuracy of SHMC using our Stacking model, as compared to single models. The incorporation of GEFs into the method results in a varying degree of reduction in the Root Mean Square Error (RMSE), along with an enhancement in the R2 on the training set. The predictive performance improvement is most prominent for Cd and As, with the RMSE decreasing by 52% and 48%, respectively. Notably, apart from Pb, there is an improvement in performance for all elements within the test set. This study confirms the effectiveness of integrating GEFs into SHMC prediction models to enhance accuracy. Applying this technique to predict soil pollution at a regional scale and to demarcate heavily polluted areas can yield satisfactory results. In the future, we plan to apply this technique to other research areas or datasets to expand its universality. Furthermore, we aim to delve more deeply into the potential of GEFs to enhance the predictive capacity of SHMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikun发布了新的文献求助10
刚刚
duoduo应助雪茶采纳,获得10
刚刚
桐桐应助sham采纳,获得10
1秒前
乔谷雪应助KingLancet采纳,获得20
2秒前
2秒前
Tacamily完成签到,获得积分10
3秒前
牛蛙煲发布了新的文献求助10
3秒前
赘婿应助呜呼采纳,获得10
3秒前
4秒前
wenwen完成签到 ,获得积分10
4秒前
Yfreya发布了新的文献求助10
5秒前
李健的小迷弟应助啱啱采纳,获得10
5秒前
orixero应助zihuan采纳,获得10
5秒前
lxh完成签到,获得积分10
6秒前
Dolores完成签到,获得积分10
6秒前
wsqg123完成签到,获得积分10
8秒前
8秒前
10秒前
FF12781发布了新的文献求助10
11秒前
chen完成签到,获得积分10
11秒前
11秒前
斯文败类应助Yfreya采纳,获得10
12秒前
13秒前
淡定问雁发布了新的文献求助10
13秒前
韩同鑫完成签到,获得积分10
13秒前
雪酪芋泥球完成签到 ,获得积分10
14秒前
14秒前
JamesPei应助新野采纳,获得10
14秒前
十一完成签到,获得积分10
15秒前
高高尔蓉完成签到,获得积分20
15秒前
hy关闭了hy文献求助
16秒前
sham发布了新的文献求助10
16秒前
韩同鑫发布了新的文献求助10
17秒前
gdh发布了新的文献求助10
17秒前
17秒前
18秒前
hdh016完成签到,获得积分10
18秒前
我爱酸菜鱼完成签到,获得积分10
18秒前
19秒前
yi只熊发布了新的文献求助10
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222621
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8174931
捐赠科研通 2538292
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619608