亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants

高光谱成像 均方误差 遥感 多光谱图像 环境科学 卫星 背景(考古学) 数据集 计算机科学 人工智能 数学 统计 地质学 古生物学 工程类 航空航天工程
作者
Liwei Yao,Mingjie Xu,Yihui Liu,Ruiqing Niu,Xueling Wu,Yingxu Song
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:158: 111416-111416 被引量:14
标识
DOI:10.1016/j.ecolind.2023.111416
摘要

The evolution of hyperspectral remote sensing and artificial intelligence technologies has led to a surge in their application for predicting Soil Heavy Metal Concentrations (SHMC). Nevertheless, the preponderance of existing research within this sphere centers around data procured from ground-based and airborne hyperspectral sources. Studies that employ satellite-based methodologies typically rely on medium spatial resolution hyperspectral or multispectral satellite data. The application of high spatial and spectral resolution satellite data, such as that obtained from GaoFen-5 (GF-5), remains conspicuously underexplored. Furthermore, the impact of geographical environmental factors (GEFs) on the accuracy of predictions has been infrequently considered. In the context of this backdrop, the present study introduces stacking models designed to estimate SHMC. This approach integrates reflectance spectral features (SFs) derived from GF-5 hyperspectral imagery and GEFs, including topography and pollution sources. The results demonstrate a notable improvement in the predictive accuracy of SHMC using our Stacking model, as compared to single models. The incorporation of GEFs into the method results in a varying degree of reduction in the Root Mean Square Error (RMSE), along with an enhancement in the R2 on the training set. The predictive performance improvement is most prominent for Cd and As, with the RMSE decreasing by 52% and 48%, respectively. Notably, apart from Pb, there is an improvement in performance for all elements within the test set. This study confirms the effectiveness of integrating GEFs into SHMC prediction models to enhance accuracy. Applying this technique to predict soil pollution at a regional scale and to demarcate heavily polluted areas can yield satisfactory results. In the future, we plan to apply this technique to other research areas or datasets to expand its universality. Furthermore, we aim to delve more deeply into the potential of GEFs to enhance the predictive capacity of SHMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好颜发布了新的文献求助10
3秒前
11秒前
大模型应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
Betty发布了新的文献求助10
26秒前
35秒前
41秒前
57秒前
1分钟前
慕青应助lty采纳,获得10
1分钟前
1分钟前
1分钟前
lty发布了新的文献求助10
1分钟前
小岩完成签到 ,获得积分10
1分钟前
2分钟前
咕咕发布了新的文献求助10
2分钟前
彩色黑米完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
AKi233完成签到,获得积分10
2分钟前
AKi233发布了新的文献求助10
2分钟前
充电宝应助AKi233采纳,获得10
2分钟前
咕咕完成签到,获得积分10
2分钟前
FengyaoWang完成签到,获得积分10
2分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI5应助Betty采纳,获得10
4分钟前
MchemG应助彩色的谷云采纳,获得10
4分钟前
吴彦祖完成签到,获得积分10
4分钟前
xixilulixiu完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
tree发布了新的文献求助10
5分钟前
大模型应助tree采纳,获得10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
tree完成签到,获得积分20
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638