亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants

高光谱成像 均方误差 遥感 多光谱图像 环境科学 卫星 背景(考古学) 数据集 计算机科学 人工智能 数学 统计 地质学 古生物学 工程类 航空航天工程
作者
Liwei Yao,Mingjie Xu,Yihui Liu,Ruiqing Niu,Xueling Wu,Yingxu Song
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:158: 111416-111416 被引量:14
标识
DOI:10.1016/j.ecolind.2023.111416
摘要

The evolution of hyperspectral remote sensing and artificial intelligence technologies has led to a surge in their application for predicting Soil Heavy Metal Concentrations (SHMC). Nevertheless, the preponderance of existing research within this sphere centers around data procured from ground-based and airborne hyperspectral sources. Studies that employ satellite-based methodologies typically rely on medium spatial resolution hyperspectral or multispectral satellite data. The application of high spatial and spectral resolution satellite data, such as that obtained from GaoFen-5 (GF-5), remains conspicuously underexplored. Furthermore, the impact of geographical environmental factors (GEFs) on the accuracy of predictions has been infrequently considered. In the context of this backdrop, the present study introduces stacking models designed to estimate SHMC. This approach integrates reflectance spectral features (SFs) derived from GF-5 hyperspectral imagery and GEFs, including topography and pollution sources. The results demonstrate a notable improvement in the predictive accuracy of SHMC using our Stacking model, as compared to single models. The incorporation of GEFs into the method results in a varying degree of reduction in the Root Mean Square Error (RMSE), along with an enhancement in the R2 on the training set. The predictive performance improvement is most prominent for Cd and As, with the RMSE decreasing by 52% and 48%, respectively. Notably, apart from Pb, there is an improvement in performance for all elements within the test set. This study confirms the effectiveness of integrating GEFs into SHMC prediction models to enhance accuracy. Applying this technique to predict soil pollution at a regional scale and to demarcate heavily polluted areas can yield satisfactory results. In the future, we plan to apply this technique to other research areas or datasets to expand its universality. Furthermore, we aim to delve more deeply into the potential of GEFs to enhance the predictive capacity of SHMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RSU完成签到,获得积分10
6秒前
12秒前
早早发布了新的文献求助150
29秒前
酷波er应助草木采纳,获得10
38秒前
科目三应助早早采纳,获得10
39秒前
44秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
shinian发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Kevin发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
草木发布了新的文献求助10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
Kevin发布了新的文献求助30
2分钟前
草木完成签到,获得积分20
3分钟前
草木发布了新的文献求助10
3分钟前
wanci应助草木采纳,获得10
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
shinian发布了新的文献求助10
4分钟前
4分钟前
草木发布了新的文献求助10
4分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
草木发布了新的文献求助10
5分钟前
LeoBigman完成签到 ,获得积分10
5分钟前
claud完成签到 ,获得积分0
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
lili完成签到 ,获得积分10
5分钟前
草木发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
深情安青应助哈哈哈采纳,获得10
6分钟前
6分钟前
哈哈哈发布了新的文献求助10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976675
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204814
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629