Simultaneous Estimation of Digit Tip Forces and Hand Postures in a Simulated Real-life Condition with High-density Electromyography and Deep Learning

抓住 肌电图 人工智能 计算机科学 平均绝对误差 模式识别(心理学) 卷积神经网络 计算机视觉 模拟 数学 均方误差 物理医学与康复 统计 医学 程序设计语言
作者
Farnaz Rahimi,Mohammad Ali Badamchizadeh,Sehraneh Ghaemi,Alessandro Del Vecchio
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 5708-5717 被引量:1
标识
DOI:10.1109/jbhi.2024.3350239
摘要

In myoelectric control, continuous estimation of multiple degrees of freedom has an important role. Most studies have focused on estimating discrete postures or forces of the human hand but for a practical prosthetic system, both should be considered. In daily life activities, hand postures vary for grasping different objects and the amount of force exerted on each fingertip depends on the shape and weight of the object. This study aims to investigate the feasibility of continuous estimation of multiple degrees of freedom. We proposed a reach and grasp framework to study both absolute fingertip forces and hand movement types using deep learning techniques applied to high-density surface electromyography (HD-sEMG). Four daily life grasp types were examined and absolute fingertip forces were simultaneously estimated while grasping various objects, along with the grasp types. We showed that combining a 3-dimensional Convolutional Neural Network (3DCNN) with a Long Short-term Memory (LSTM) can reliably and continuously estimate the digit tip forces and classify different hand postures in human individuals. The mean absolute error (MAE) and Pearson correlation coefficient (PCC) results of the force estimation problem across all fingers and subjects were 0.46 ± 0.23 and 0.90 ± 0.03% respectively and for the classification problem, they were 0.04 ± 0.01 and 0.97 ± 0.02%. The results demonstrated that both absolute digit tip forces and hand postures can be successfully estimated through deep learning and HD-sEMG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
时雨发布了新的文献求助10
1秒前
kiki完成签到,获得积分10
2秒前
李健应助迷人的Jack采纳,获得10
2秒前
2秒前
3秒前
DKE完成签到,获得积分10
3秒前
3秒前
3秒前
cj326发布了新的文献求助10
5秒前
6秒前
Drwang发布了新的文献求助10
6秒前
陶醉海露发布了新的文献求助10
6秒前
小肥仔完成签到 ,获得积分10
6秒前
6秒前
希望天下0贩的0应助tanrui采纳,获得10
6秒前
6秒前
英俊鼠标发布了新的文献求助10
7秒前
小蘑菇应助机智的砖家采纳,获得10
7秒前
缥缈的寄云应助xicifish采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
从容的无极应助热情的戾采纳,获得10
7秒前
科研通AI5应助terryok采纳,获得10
8秒前
小龙虾应助安然采纳,获得10
8秒前
9秒前
王超远完成签到,获得积分10
9秒前
NexusExplorer应助暴躁的洋葱采纳,获得10
9秒前
gy发布了新的文献求助10
9秒前
9秒前
10秒前
FashionBoy应助忐忑的骁采纳,获得10
10秒前
11秒前
11秒前
one发布了新的文献求助10
12秒前
芝士完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797