可积系统
松驰对
可变系数
双线性插值
双线性形式
孤子
变量(数学)
贝尔多项式
符号计算
物理
转化(遗传学)
双线性变换
数学分析
数学物理
应用数学
非线性系统
纯数学
数学
量子力学
统计
生物化学
化学
数字滤波器
滤波器(信号处理)
计算机科学
计算机视觉
基因
作者
Yu-Qi Chen,Bo Tian,Yuan Shen,Tianyu Zhou
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2023-12-01
卷期号:35 (12)
被引量:2
摘要
In this paper, we focus our attention on a (3 + 1)-dimensional variable-coefficient Hirota bilinear system in a fluid with symbolic computation. The Painlevé integrable property is derived. Via the Ablowitz–Kaup–Newell–Segur procedure, we obtain a Lax pair under the coefficient constraints. Based on the Hirota method, we obtain a bilinear form and a bilinear Bäcklund transformation under the coefficient constraints. We derive the auto-Bäcklund transformations based on the truncated Painlevé expansions. According to the bilinear form, we give the two-soliton solutions under the coefficient constraints. We also discuss the relation between the variable coefficients and soliton solutions, i.e., how the two solitons present different types with the different forms of the variable coefficients.
科研通智能强力驱动
Strongly Powered by AbleSci AI