Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

计算机科学 生物识别 深度学习 人工智能 指纹(计算) 介绍(产科) 欺骗攻击 卷积神经网络 面部识别系统 机器学习 虹膜识别 面子(社会学概念) 特征提取 计算机安全 医学 社会科学 社会学 放射科
作者
Kashif Shaheed,Piotr Szczuko,Munish Kumar,Imran Qureshi,Qaisar Abbas,Ihsan Ullah
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107569-107569 被引量:14
标识
DOI:10.1016/j.engappai.2023.107569
摘要

Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric systems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with presentation attacks (PAs) being prevalent and easily executed. PAs involve displaying videos, images, or full-face masks to trick biometric systems and gain unauthorized access. Many authors are currently focusing on detecting these presentation attacks (PAD) and have developed several methods, particularly those based on deep learning (DL), which have shown superior performance compared to other techniques. This survey article focuses on manuscripts related to deep learning presentation attack detection, spoof attack detection using deep learning, and anti-spoofing deep learning methods for biometric finger vein, fingerprint, iris, and face recognition. The studies were primarily sourced from four digital research libraries: ACM, Science Direct, Springer, and IEEE Xplore. The article presents a comprehensive review of DL-based PAD systems, examining recent literature on DL-based PAD methods in finger vein, fingerprint, iris, and face detection systems. Through extensive research of the literature, recent algorithms and their solutions for relevant PAD approaches are thoroughly analyzed. Additionally, the article provides a performance analysis and highlights the most promising research findings. The discussion section addresses current issues, opportunities for advancement, and potential solutions associated with deep learning-based PAD methods. This study is valuable to various community users seeking to understand the significance of this technology and its recent applicability in the development of biometric technology for deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amorino完成签到,获得积分10
刚刚
柠一完成签到 ,获得积分10
刚刚
cindy完成签到 ,获得积分10
刚刚
gugugaga完成签到,获得积分10
1秒前
Zzz完成签到,获得积分10
3秒前
黎明完成签到,获得积分10
3秒前
llllzzh完成签到 ,获得积分10
4秒前
飞火完成签到,获得积分10
4秒前
jun完成签到,获得积分10
5秒前
ye发布了新的文献求助20
5秒前
5秒前
cenzy完成签到,获得积分10
5秒前
虾502完成签到 ,获得积分10
7秒前
皇帝的床帘应助youzala采纳,获得30
8秒前
hansa完成签到,获得积分0
8秒前
在在完成签到 ,获得积分10
9秒前
CT发布了新的文献求助10
9秒前
科研小lese完成签到,获得积分10
10秒前
东方欲晓完成签到,获得积分10
10秒前
10秒前
小白完成签到,获得积分10
12秒前
梦在彼岸完成签到,获得积分10
14秒前
怕黑盼山完成签到,获得积分10
14秒前
海棠朵朵完成签到 ,获得积分10
14秒前
快乐的幼丝完成签到 ,获得积分10
15秒前
CCsouljump完成签到 ,获得积分10
15秒前
15秒前
CT完成签到,获得积分10
16秒前
831143完成签到 ,获得积分0
17秒前
18秒前
草莓熊和他的豆角完成签到,获得积分10
18秒前
彦卿完成签到 ,获得积分10
19秒前
Paper多多应助xiaofu采纳,获得10
19秒前
lee完成签到,获得积分10
19秒前
含蓄元冬完成签到 ,获得积分10
19秒前
英俊的铭应助读研好难采纳,获得10
19秒前
不见花绚丽完成签到,获得积分10
21秒前
良辰应助zzzzz采纳,获得10
21秒前
21秒前
飘逸访文完成签到,获得积分10
21秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830396
关于积分的说明 7976868
捐赠科研通 2491986
什么是DOI,文献DOI怎么找? 1329164
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954