亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transforming sentiment analysis for e-commerce product reviews: Hybrid deep learning model with an innovative term weighting and feature selection

加权 期限(时间) 特征选择 计算机科学 选择(遗传算法) 特征(语言学) 产品(数学) 人工智能 情绪分析 机器学习 情报检索 自然语言处理 数学 语言学 医学 哲学 物理 几何学 量子力学 放射科
作者
Punithavathi Rasappan,M. Premkumar,Garima Sinha,B. Saravanan
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103654-103654 被引量:4
标识
DOI:10.1016/j.ipm.2024.103654
摘要

Improving user satisfaction by analyzing many user reviews found on e-commerce platforms is becoming increasingly significant in this modern world. However, accurately predicting sentiment polarities within these reviews remains challenging due to variable sequence lengths, textual orders, and complex logic within the content. This study introduces a new optimized Machine Learning (ML) algorithm named Enhanced Golden Jackal Optimizer-based Long Short-Term Memory (EGJO-LSTM) to perform Sentiment Analysis (SA) of e-commerce product reviews. This SA method comprises four critical stages: data collection, pre-processing, feature selection, feature extraction, and lastly, sentiment classification. The initial step involves utilizing a web scrapping tool to collate customer product reviews from various e-commerce websites. The collected data is subjected to a pre-processing phase to refine the scraped information. The pre-processed data then undergoes term weighting and feature selection processes by applying Log-term Frequency-based Modified Inverse Class Frequency (LF-MICF) and Improved Grey Wolf Optimizer (IGWO). In the final stage, the refined IGWO data is fed into the EGJO-LSTM model, which then classifies the sentiment of the shopper reviews into negative, positive, or neutral classes. Performance analysis was conducted using a prompt cloud dataset from Amazon.com, comparing the proposed classifier with state-of-the-art ML models. The metrics, such as precision, accuracy, recall and F1-score, were used to compare the performance. The results demonstrate that the EGJO-LSTM outperforms other models in sentiment classification. The proposed strategy is 25% and 32% better than the traditional and hybrid methods in terms of precision and accuracy. Further observations showed that when using the recommended LF-MICF weighting method, the EGJO-LSTM surpassed the performance of the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
14秒前
橙子发布了新的文献求助10
17秒前
李健应助啦啦啦采纳,获得10
18秒前
Hayat发布了新的文献求助10
19秒前
英姑应助lll采纳,获得10
25秒前
善学以致用应助微信研友采纳,获得10
29秒前
31秒前
啦啦啦发布了新的文献求助10
34秒前
SciGPT应助科研通管家采纳,获得10
54秒前
54秒前
我是老大应助红泥小火炉采纳,获得10
1分钟前
DrLee完成签到,获得积分10
1分钟前
科研通AI2S应助maodou采纳,获得10
1分钟前
1分钟前
1分钟前
batmanrobin完成签到,获得积分10
1分钟前
wangchu发布了新的文献求助10
1分钟前
灵巧的代芙完成签到 ,获得积分10
1分钟前
晚安886发布了新的文献求助10
2分钟前
2分钟前
夜云完成签到,获得积分10
2分钟前
夜云发布了新的文献求助30
2分钟前
yyr完成签到 ,获得积分10
2分钟前
情怀应助夜云采纳,获得10
2分钟前
科目三应助..采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
tlx发布了新的文献求助30
3分钟前
西红柿不吃皮完成签到 ,获得积分10
3分钟前
nico完成签到 ,获得积分10
4分钟前
4分钟前
..发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助猫七采纳,获得10
4分钟前
vincy完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054374
关于积分的说明 9041848
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505182
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864