Transforming sentiment analysis for e-commerce product reviews: Hybrid deep learning model with an innovative term weighting and feature selection

加权 期限(时间) 特征选择 计算机科学 选择(遗传算法) 特征(语言学) 产品(数学) 人工智能 情绪分析 机器学习 情报检索 自然语言处理 数学 语言学 医学 哲学 物理 几何学 量子力学 放射科
作者
Punithavathi Rasappan,M. Premkumar,Garima Sinha,B. Saravanan
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (3): 103654-103654 被引量:4
标识
DOI:10.1016/j.ipm.2024.103654
摘要

Improving user satisfaction by analyzing many user reviews found on e-commerce platforms is becoming increasingly significant in this modern world. However, accurately predicting sentiment polarities within these reviews remains challenging due to variable sequence lengths, textual orders, and complex logic within the content. This study introduces a new optimized Machine Learning (ML) algorithm named Enhanced Golden Jackal Optimizer-based Long Short-Term Memory (EGJO-LSTM) to perform Sentiment Analysis (SA) of e-commerce product reviews. This SA method comprises four critical stages: data collection, pre-processing, feature selection, feature extraction, and lastly, sentiment classification. The initial step involves utilizing a web scrapping tool to collate customer product reviews from various e-commerce websites. The collected data is subjected to a pre-processing phase to refine the scraped information. The pre-processed data then undergoes term weighting and feature selection processes by applying Log-term Frequency-based Modified Inverse Class Frequency (LF-MICF) and Improved Grey Wolf Optimizer (IGWO). In the final stage, the refined IGWO data is fed into the EGJO-LSTM model, which then classifies the sentiment of the shopper reviews into negative, positive, or neutral classes. Performance analysis was conducted using a prompt cloud dataset from Amazon.com, comparing the proposed classifier with state-of-the-art ML models. The metrics, such as precision, accuracy, recall and F1-score, were used to compare the performance. The results demonstrate that the EGJO-LSTM outperforms other models in sentiment classification. The proposed strategy is 25% and 32% better than the traditional and hybrid methods in terms of precision and accuracy. Further observations showed that when using the recommended LF-MICF weighting method, the EGJO-LSTM surpassed the performance of the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦悦完成签到 ,获得积分10
刚刚
汉堡包应助等待冰露采纳,获得10
1秒前
缥缈的寻琴应助zzzzz采纳,获得10
1秒前
hZC完成签到,获得积分20
1秒前
jzmulyl完成签到,获得积分10
2秒前
英姑应助Tessa采纳,获得10
4秒前
4秒前
zjiang完成签到 ,获得积分10
4秒前
M1K011110完成签到 ,获得积分10
4秒前
生动的慕卉完成签到,获得积分10
5秒前
7秒前
8秒前
sh完成签到,获得积分10
9秒前
zjiang发布了新的文献求助10
10秒前
11秒前
赵淑晴发布了新的文献求助10
12秒前
嘿嘿发布了新的文献求助20
13秒前
lucky发布了新的文献求助10
15秒前
20秒前
cultromics完成签到,获得积分10
21秒前
22秒前
所所应助赵淑晴采纳,获得10
22秒前
科研通AI2S应助妮儿采纳,获得10
24秒前
24秒前
叶远望完成签到 ,获得积分10
25秒前
小闵完成签到,获得积分10
25秒前
小安发布了新的文献求助10
26秒前
小袁发布了新的文献求助40
26秒前
雷雷完成签到,获得积分10
27秒前
HSA发布了新的文献求助10
28秒前
霸气以菱发布了新的文献求助10
30秒前
领导范儿应助小雒雒采纳,获得10
31秒前
斯文冷亦完成签到 ,获得积分10
34秒前
36秒前
36秒前
37秒前
37秒前
38秒前
38秒前
李健的小迷弟应助小安采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975