Transforming sentiment analysis for e-commerce product reviews: Hybrid deep learning model with an innovative term weighting and feature selection

加权 期限(时间) 特征选择 计算机科学 选择(遗传算法) 特征(语言学) 产品(数学) 人工智能 情绪分析 机器学习 情报检索 自然语言处理 数学 语言学 医学 量子力学 几何学 物理 放射科 哲学
作者
Punithavathi Rasappan,M. Premkumar,Garima Sinha,B. Saravanan
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103654-103654 被引量:4
标识
DOI:10.1016/j.ipm.2024.103654
摘要

Improving user satisfaction by analyzing many user reviews found on e-commerce platforms is becoming increasingly significant in this modern world. However, accurately predicting sentiment polarities within these reviews remains challenging due to variable sequence lengths, textual orders, and complex logic within the content. This study introduces a new optimized Machine Learning (ML) algorithm named Enhanced Golden Jackal Optimizer-based Long Short-Term Memory (EGJO-LSTM) to perform Sentiment Analysis (SA) of e-commerce product reviews. This SA method comprises four critical stages: data collection, pre-processing, feature selection, feature extraction, and lastly, sentiment classification. The initial step involves utilizing a web scrapping tool to collate customer product reviews from various e-commerce websites. The collected data is subjected to a pre-processing phase to refine the scraped information. The pre-processed data then undergoes term weighting and feature selection processes by applying Log-term Frequency-based Modified Inverse Class Frequency (LF-MICF) and Improved Grey Wolf Optimizer (IGWO). In the final stage, the refined IGWO data is fed into the EGJO-LSTM model, which then classifies the sentiment of the shopper reviews into negative, positive, or neutral classes. Performance analysis was conducted using a prompt cloud dataset from Amazon.com, comparing the proposed classifier with state-of-the-art ML models. The metrics, such as precision, accuracy, recall and F1-score, were used to compare the performance. The results demonstrate that the EGJO-LSTM outperforms other models in sentiment classification. The proposed strategy is 25% and 32% better than the traditional and hybrid methods in terms of precision and accuracy. Further observations showed that when using the recommended LF-MICF weighting method, the EGJO-LSTM surpassed the performance of the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhendezy发布了新的文献求助10
1秒前
1秒前
1秒前
张龙完成签到,获得积分20
2秒前
孙文杰发布了新的文献求助10
2秒前
武雨寒发布了新的文献求助10
3秒前
weizhao发布了新的文献求助10
3秒前
4秒前
燕小丙完成签到,获得积分10
4秒前
经纲完成签到 ,获得积分0
6秒前
淡淡的雪发布了新的文献求助10
6秒前
7秒前
Lucas应助weizhao采纳,获得10
7秒前
方汀关注了科研通微信公众号
7秒前
LmY大帅比发布了新的文献求助10
7秒前
xiaobai123456发布了新的文献求助10
8秒前
8秒前
尹沐完成签到 ,获得积分10
8秒前
觉悟111完成签到,获得积分10
8秒前
蒸馏水应助喷香大蒜瓣采纳,获得10
9秒前
zxh完成签到,获得积分10
9秒前
费慕青发布了新的文献求助10
10秒前
丘比特应助帅气的宽采纳,获得10
10秒前
12秒前
yunan完成签到,获得积分10
13秒前
13秒前
zzz完成签到,获得积分10
13秒前
weizhao完成签到,获得积分20
13秒前
冷傲的紫寒完成签到 ,获得积分10
13秒前
姜姜姜姜发布了新的文献求助10
14秒前
失眠初夏完成签到,获得积分10
14秒前
儒雅的善愁完成签到,获得积分10
15秒前
黑猫发布了新的文献求助10
15秒前
16秒前
wheat完成签到,获得积分10
16秒前
爱喝可乐完成签到 ,获得积分10
16秒前
淡淡的雪完成签到,获得积分10
16秒前
dery完成签到,获得积分10
16秒前
打打应助aaa采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600254
求助须知:如何正确求助?哪些是违规求助? 4685964
关于积分的说明 14840835
捐赠科研通 4676051
什么是DOI,文献DOI怎么找? 2538627
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167