四聚体
氧化磷酸化
化学
巴基斯坦卢比
激酶
癌症研究
细胞生长
磷酸化
线粒体
细胞生物学
生物化学
生物
丙酮酸激酶
糖酵解
新陈代谢
酶
作者
Lijun Liang,Fuwei Yang,Di Wang,Yanfei Zhang,Hong Yu,Zheng Wang,Beibei Sun,Yutao Liu,Guizhen Wang,Guang‐Biao Zhou
标识
DOI:10.1038/s41421-023-00633-0
摘要
Abstract Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
科研通智能强力驱动
Strongly Powered by AbleSci AI