An efficient multimodal sentiment analysis in social media using hybrid optimal multi-scale residual attention network

计算机科学 残余物 情绪分析 社会化媒体 比例(比率) 人工智能 机器学习 算法 万维网 物理 量子力学
作者
S. Bairavel,M. Kanipriya,S. Prabakeran,Krishnamurthy Marudhamuthu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (2) 被引量:2
标识
DOI:10.1007/s10462-023-10645-7
摘要

Abstract Sentiment analysis is a key component of many social media analysis projects. Additionally, prior research has concentrated on a single modality in particular, such as text descriptions for visual information. In contrast to standard image databases, social images frequently connect to one another, making sentiment analysis challenging. The majority of methods now in use consider different images individually, rendering them useless for interrelated images. We proposed a hybrid Arithmetic Optimization Algorithm- Hunger Games Search (AOA-HGS)-optimized Ensemble Multi-scale Residual Attention Network (EMRA-Net) technique in this paper to explore the modal correlations including texts, audio, social links, and video for more effective multimodal sentiment analysis. The hybrid AOA-HGS technique learns complementary and comprehensive features. The EMRA-Net uses two segments, including Ensemble Attention CNN (EA-CNN) and Three-scale Residual Attention Convolutional Neural Network (TRA-CNN), to analyze the multimodal sentiments. The loss of spatial domain image texture features can be reduced by adding the Wavelet transform to TRA-CNN. The feature-level fusion technique known as EA-CNN is used to combine visual, audio, and textual information. The proposed method performs significantly better than the existing multimodel sentimental analysis techniques of HALCB, HDF, and MMLatch when evaluated using the Multimodal Emotion Lines Dataset (MELD) and EmoryNLP datasets. Also, even though the size of the training set varies, the proposed method outperformed other techniques in terms of recall, accuracy, F score, and precision and takes less time to compute in both datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaofg发布了新的文献求助10
刚刚
希望天下0贩的0应助zpc采纳,获得10
刚刚
大个应助Folium采纳,获得10
刚刚
1秒前
Paddi发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
wcl完成签到 ,获得积分20
4秒前
DE2022发布了新的文献求助10
4秒前
科研通AI5应助王一采纳,获得10
4秒前
5秒前
勤劳尔丝完成签到 ,获得积分10
6秒前
七柒发布了新的文献求助10
6秒前
烟花应助ZzyyTao采纳,获得10
6秒前
dxs发布了新的文献求助20
6秒前
Hello应助yhtu采纳,获得10
7秒前
SciGPT应助鑫问采纳,获得10
7秒前
wcl关注了科研通微信公众号
9秒前
小二郎应助Paddi采纳,获得10
9秒前
ddj发布了新的文献求助10
12秒前
酷酷小鸽子完成签到,获得积分20
12秒前
CipherSage应助DE2022采纳,获得10
12秒前
俏皮丸子发布了新的文献求助10
12秒前
Eve丶Paopaoxuan应助王文茹采纳,获得10
13秒前
pluto应助王文茹采纳,获得10
13秒前
科研通AI5应助王文茹采纳,获得10
13秒前
15秒前
8R60d8应助爱撒娇的书翠采纳,获得10
16秒前
善学以致用应助小李采纳,获得10
16秒前
17秒前
18秒前
chanyi发布了新的文献求助10
19秒前
快乐二方发布了新的文献求助10
22秒前
24秒前
24秒前
可爱的函函应助冷傲易槐采纳,获得10
25秒前
25秒前
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491042
求助须知:如何正确求助?哪些是违规求助? 3077760
关于积分的说明 9150009
捐赠科研通 2770141
什么是DOI,文献DOI怎么找? 1520017
邀请新用户注册赠送积分活动 704488
科研通“疑难数据库(出版商)”最低求助积分说明 702196