An efficient multimodal sentiment analysis in social media using hybrid optimal multi-scale residual attention network

计算机科学 残余物 情绪分析 社会化媒体 比例(比率) 人工智能 机器学习 算法 万维网 物理 量子力学
作者
S. Bairavel,M. Kanipriya,S. Prabakeran,Krishnamurthy Marudhamuthu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (2) 被引量:6
标识
DOI:10.1007/s10462-023-10645-7
摘要

Abstract Sentiment analysis is a key component of many social media analysis projects. Additionally, prior research has concentrated on a single modality in particular, such as text descriptions for visual information. In contrast to standard image databases, social images frequently connect to one another, making sentiment analysis challenging. The majority of methods now in use consider different images individually, rendering them useless for interrelated images. We proposed a hybrid Arithmetic Optimization Algorithm- Hunger Games Search (AOA-HGS)-optimized Ensemble Multi-scale Residual Attention Network (EMRA-Net) technique in this paper to explore the modal correlations including texts, audio, social links, and video for more effective multimodal sentiment analysis. The hybrid AOA-HGS technique learns complementary and comprehensive features. The EMRA-Net uses two segments, including Ensemble Attention CNN (EA-CNN) and Three-scale Residual Attention Convolutional Neural Network (TRA-CNN), to analyze the multimodal sentiments. The loss of spatial domain image texture features can be reduced by adding the Wavelet transform to TRA-CNN. The feature-level fusion technique known as EA-CNN is used to combine visual, audio, and textual information. The proposed method performs significantly better than the existing multimodel sentimental analysis techniques of HALCB, HDF, and MMLatch when evaluated using the Multimodal Emotion Lines Dataset (MELD) and EmoryNLP datasets. Also, even though the size of the training set varies, the proposed method outperformed other techniques in terms of recall, accuracy, F score, and precision and takes less time to compute in both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyper_zhou发布了新的文献求助10
刚刚
Raymen发布了新的文献求助10
5秒前
肖123完成签到,获得积分10
7秒前
阳昭广完成签到,获得积分10
7秒前
林志迎完成签到,获得积分10
7秒前
两千完成签到 ,获得积分20
7秒前
Ferry完成签到 ,获得积分10
8秒前
8秒前
852应助听雨采纳,获得10
9秒前
SYLH应助超人Steiner采纳,获得10
10秒前
10秒前
11秒前
orixero应助满意的大雁采纳,获得10
11秒前
妖哥完成签到,获得积分10
12秒前
失眠煎饼发布了新的文献求助10
14秒前
fei8047发布了新的文献求助10
14秒前
14秒前
踏实的道消完成签到 ,获得积分10
15秒前
15秒前
脑洞疼应助葳蕤采纳,获得10
15秒前
一条热带鱼完成签到,获得积分10
15秒前
加拿大一枝黄花完成签到,获得积分10
16秒前
16秒前
视野胤发布了新的文献求助20
17秒前
ZJR发布了新的文献求助10
19秒前
白衣轻叹发布了新的文献求助10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得30
19秒前
ba给ba的求助进行了留言
19秒前
大模型应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得50
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
jimmyzzz应助科研通管家采纳,获得10
20秒前
lx发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377