Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism

计算机科学 颜色恒定性 人工智能 机制(生物学) 计算机视觉 图像(数学) 图像增强 认识论 哲学
作者
Shaojin Ma,Weiguo Pan,Nuoya Li,Songjie Du,Hongzhe Liu,Bingxin Xu,Cheng Xu,Xuewei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (1) 被引量:9
标识
DOI:10.14569/ijacsa.2024.0150146
摘要

Images in low-light conditions typically exhibit significant degradation such as low contrast, color shift, noise and artifacts, which diminish the accuracy of the recognition task in computer vision. To address these challenges, this paper proposes a low-light image enhancement method based on Retinex. Specifically, a decomposition network is designed to acquire high-quality light illumination and reflection maps, complemented by the incorporation of a comprehensive loss function. A denoising network was proposed to mitigate the noise in low-light images with the assistance of images’ spatial information. Notably, the extended convolution layer has been employed to replace the maximum pooling layer and the Basic-Residual-Modules (BRM) module from the decomposition network has integrates into the denoising network. To address challenges related to shadow blocks and halo artifacts, an enhancement module was proposed to be integration into the jump connections of U-Net. This enhancement module leverages the Feature-Extraction- Module (FEM) attention module, a sophisticated mechanism that improves the network’s capacity to learn meaningful features by integrating the image features in both channel dimensions and spatial attention mechanism to receive more detailed illumination information about the object and suppress other useless information. Based on the experiments conducted on public datasets LOL-V1 and LOL-V2, our method demonstrates noteworthy performance improvements. The enhanced results by our method achieve an average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation metrics - PSNR, SSIM, NIQE and GMSD. Those results superior to the mainstream methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lingmuhuahua完成签到,获得积分10
刚刚
李健应助暴富小羊采纳,获得10
1秒前
路瑶瑶完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小蘑菇应助斑马采纳,获得10
2秒前
2秒前
HXY完成签到 ,获得积分10
2秒前
chenamy完成签到,获得积分10
2秒前
3秒前
张佳宁发布了新的文献求助10
3秒前
3秒前
简默完成签到,获得积分10
3秒前
笨笨千秋完成签到,获得积分10
4秒前
小王完成签到,获得积分10
4秒前
4秒前
WYN发布了新的文献求助10
4秒前
4秒前
5秒前
赘婿应助GOJO采纳,获得10
6秒前
张宜诺发布了新的文献求助10
6秒前
6秒前
小王发布了新的文献求助10
7秒前
不怕困难发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
盆清完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
ayayaya发布了新的文献求助10
10秒前
10秒前
邓佳鑫Alan应助眼睛大芙采纳,获得10
10秒前
凯凯发布了新的文献求助10
10秒前
小米完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616