亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism

计算机科学 颜色恒定性 人工智能 机制(生物学) 计算机视觉 图像(数学) 图像增强 认识论 哲学
作者
Shaojin Ma,Weiguo Pan,Nuoya Li,Songjie Du,Hongzhe Liu,Bingxin Xu,Cheng Xu,Xuewei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (1) 被引量:9
标识
DOI:10.14569/ijacsa.2024.0150146
摘要

Images in low-light conditions typically exhibit significant degradation such as low contrast, color shift, noise and artifacts, which diminish the accuracy of the recognition task in computer vision. To address these challenges, this paper proposes a low-light image enhancement method based on Retinex. Specifically, a decomposition network is designed to acquire high-quality light illumination and reflection maps, complemented by the incorporation of a comprehensive loss function. A denoising network was proposed to mitigate the noise in low-light images with the assistance of images’ spatial information. Notably, the extended convolution layer has been employed to replace the maximum pooling layer and the Basic-Residual-Modules (BRM) module from the decomposition network has integrates into the denoising network. To address challenges related to shadow blocks and halo artifacts, an enhancement module was proposed to be integration into the jump connections of U-Net. This enhancement module leverages the Feature-Extraction- Module (FEM) attention module, a sophisticated mechanism that improves the network’s capacity to learn meaningful features by integrating the image features in both channel dimensions and spatial attention mechanism to receive more detailed illumination information about the object and suppress other useless information. Based on the experiments conducted on public datasets LOL-V1 and LOL-V2, our method demonstrates noteworthy performance improvements. The enhanced results by our method achieve an average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation metrics - PSNR, SSIM, NIQE and GMSD. Those results superior to the mainstream methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助wq采纳,获得10
3秒前
23秒前
cling发布了新的文献求助10
29秒前
30秒前
多乐多发布了新的文献求助10
39秒前
40秒前
Haim4完成签到,获得积分20
43秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
木棉发布了新的文献求助10
2分钟前
2分钟前
无极微光应助刘言采纳,获得20
2分钟前
凡尔赛老痘完成签到,获得积分10
2分钟前
guoguo82完成签到,获得积分10
2分钟前
2分钟前
开放道天发布了新的文献求助10
2分钟前
2分钟前
2分钟前
赘婿应助Mystic采纳,获得10
2分钟前
2分钟前
2分钟前
Mystic发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
计划完成签到,获得积分10
3分钟前
msn00完成签到 ,获得积分10
3分钟前
谢桓完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205