Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism

计算机科学 颜色恒定性 人工智能 机制(生物学) 计算机视觉 图像(数学) 图像增强 认识论 哲学
作者
Shaojin Ma,Weiguo Pan,Nuoya Li,Songjie Du,Hongzhe Liu,Bingxin Xu,Cheng Xu,Xuewei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (1)
标识
DOI:10.14569/ijacsa.2024.0150146
摘要

Images in low-light conditions typically exhibit significant degradation such as low contrast, color shift, noise and artifacts, which diminish the accuracy of the recognition task in computer vision. To address these challenges, this paper proposes a low-light image enhancement method based on Retinex. Specifically, a decomposition network is designed to acquire high-quality light illumination and reflection maps, complemented by the incorporation of a comprehensive loss function. A denoising network was proposed to mitigate the noise in low-light images with the assistance of images’ spatial information. Notably, the extended convolution layer has been employed to replace the maximum pooling layer and the Basic-Residual-Modules (BRM) module from the decomposition network has integrates into the denoising network. To address challenges related to shadow blocks and halo artifacts, an enhancement module was proposed to be integration into the jump connections of U-Net. This enhancement module leverages the Feature-Extraction- Module (FEM) attention module, a sophisticated mechanism that improves the network’s capacity to learn meaningful features by integrating the image features in both channel dimensions and spatial attention mechanism to receive more detailed illumination information about the object and suppress other useless information. Based on the experiments conducted on public datasets LOL-V1 and LOL-V2, our method demonstrates noteworthy performance improvements. The enhanced results by our method achieve an average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation metrics - PSNR, SSIM, NIQE and GMSD. Those results superior to the mainstream methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqxx完成签到,获得积分10
1秒前
CipherSage应助独特绣连采纳,获得20
1秒前
英俊的铭应助caspianhuang采纳,获得10
1秒前
1秒前
无敌鱼发布了新的文献求助10
2秒前
charm12完成签到,获得积分20
2秒前
2秒前
zzx发布了新的文献求助10
3秒前
Dingz完成签到,获得积分10
3秒前
小蘑菇应助明亮无颜采纳,获得10
4秒前
4秒前
微微发布了新的文献求助10
4秒前
soar完成签到,获得积分10
4秒前
5秒前
6秒前
tyughi完成签到,获得积分10
6秒前
苏震坤发布了新的文献求助10
7秒前
情怀应助zzx采纳,获得10
7秒前
zoeyliu完成签到,获得积分10
8秒前
Gloria2022发布了新的文献求助10
8秒前
三虎科研发布了新的文献求助30
9秒前
Emma发布了新的文献求助10
9秒前
10秒前
2208320020完成签到,获得积分10
10秒前
搜集达人应助麦麦脆汁猪采纳,获得10
10秒前
10秒前
Zerone01001完成签到,获得积分10
10秒前
11秒前
CS391495876完成签到,获得积分10
11秒前
11秒前
Who发布了新的文献求助10
12秒前
ouczl完成签到,获得积分10
13秒前
淡淡寡妇应助啁啾采纳,获得10
14秒前
14秒前
QMCL完成签到,获得积分10
15秒前
不知月明是故乡给不知月明是故乡的求助进行了留言
15秒前
呆萌的心情完成签到,获得积分10
15秒前
开心千青发布了新的文献求助10
16秒前
忧郁老默发布了新的文献求助10
16秒前
大个应助微微采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053