Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism

计算机科学 颜色恒定性 人工智能 机制(生物学) 计算机视觉 图像(数学) 图像增强 认识论 哲学
作者
Shaojin Ma,Weiguo Pan,Nuoya Li,Songjie Du,Hongzhe Liu,Bingxin Xu,Cheng Xu,Xuewei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (1) 被引量:9
标识
DOI:10.14569/ijacsa.2024.0150146
摘要

Images in low-light conditions typically exhibit significant degradation such as low contrast, color shift, noise and artifacts, which diminish the accuracy of the recognition task in computer vision. To address these challenges, this paper proposes a low-light image enhancement method based on Retinex. Specifically, a decomposition network is designed to acquire high-quality light illumination and reflection maps, complemented by the incorporation of a comprehensive loss function. A denoising network was proposed to mitigate the noise in low-light images with the assistance of images’ spatial information. Notably, the extended convolution layer has been employed to replace the maximum pooling layer and the Basic-Residual-Modules (BRM) module from the decomposition network has integrates into the denoising network. To address challenges related to shadow blocks and halo artifacts, an enhancement module was proposed to be integration into the jump connections of U-Net. This enhancement module leverages the Feature-Extraction- Module (FEM) attention module, a sophisticated mechanism that improves the network’s capacity to learn meaningful features by integrating the image features in both channel dimensions and spatial attention mechanism to receive more detailed illumination information about the object and suppress other useless information. Based on the experiments conducted on public datasets LOL-V1 and LOL-V2, our method demonstrates noteworthy performance improvements. The enhanced results by our method achieve an average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation metrics - PSNR, SSIM, NIQE and GMSD. Those results superior to the mainstream methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fashing完成签到,获得积分10
1秒前
张志超发布了新的文献求助10
1秒前
蓝天发布了新的文献求助10
1秒前
优美猕猴桃完成签到 ,获得积分10
1秒前
杜妤涵完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小蘑菇应助失眠紫真采纳,获得10
3秒前
cyw发布了新的文献求助10
4秒前
搜集达人应助等待的易梦采纳,获得10
6秒前
稳重的不平完成签到,获得积分10
7秒前
FashionBoy应助天下无贼采纳,获得10
7秒前
7秒前
Kka完成签到 ,获得积分10
8秒前
张大星完成签到 ,获得积分10
8秒前
SN发布了新的文献求助10
8秒前
高兴绿柳完成签到 ,获得积分10
8秒前
隐形曼青应助墨绝采纳,获得10
9秒前
爆米花应助墨绝采纳,获得10
9秒前
Orange应助墨绝采纳,获得10
9秒前
张111发布了新的文献求助10
9秒前
余南发布了新的文献求助10
11秒前
我是老大应助早早采纳,获得10
11秒前
11秒前
11秒前
崽崽完成签到,获得积分10
14秒前
14秒前
15秒前
领导范儿应助SN采纳,获得10
15秒前
欧阳铭发布了新的文献求助10
15秒前
专注若之发布了新的文献求助10
15秒前
16秒前
李爱国应助莫名其妙采纳,获得10
16秒前
林结衣完成签到,获得积分10
17秒前
金振龙完成签到,获得积分10
18秒前
19秒前
迷路枫发布了新的文献求助10
19秒前
20秒前
20秒前
杨乃彬完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836