Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism

计算机科学 颜色恒定性 人工智能 机制(生物学) 计算机视觉 图像(数学) 图像增强 哲学 认识论
作者
Shaojin Ma,Weiguo Pan,Nuoya Li,Songjie Du,Hongzhe Liu,Bingxin Xu,Cheng Xu,Xuewei Li
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:15 (1) 被引量:9
标识
DOI:10.14569/ijacsa.2024.0150146
摘要

Images in low-light conditions typically exhibit significant degradation such as low contrast, color shift, noise and artifacts, which diminish the accuracy of the recognition task in computer vision. To address these challenges, this paper proposes a low-light image enhancement method based on Retinex. Specifically, a decomposition network is designed to acquire high-quality light illumination and reflection maps, complemented by the incorporation of a comprehensive loss function. A denoising network was proposed to mitigate the noise in low-light images with the assistance of images’ spatial information. Notably, the extended convolution layer has been employed to replace the maximum pooling layer and the Basic-Residual-Modules (BRM) module from the decomposition network has integrates into the denoising network. To address challenges related to shadow blocks and halo artifacts, an enhancement module was proposed to be integration into the jump connections of U-Net. This enhancement module leverages the Feature-Extraction- Module (FEM) attention module, a sophisticated mechanism that improves the network’s capacity to learn meaningful features by integrating the image features in both channel dimensions and spatial attention mechanism to receive more detailed illumination information about the object and suppress other useless information. Based on the experiments conducted on public datasets LOL-V1 and LOL-V2, our method demonstrates noteworthy performance improvements. The enhanced results by our method achieve an average of 23.15, 0.88, 0.419 and 0.0040 on four evaluation metrics - PSNR, SSIM, NIQE and GMSD. Those results superior to the mainstream methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
寒生发布了新的文献求助10
刚刚
1秒前
1秒前
杨沛发布了新的文献求助10
2秒前
2秒前
江芯发布了新的文献求助10
3秒前
whisky完成签到,获得积分10
4秒前
北北北发布了新的文献求助10
4秒前
史燕照完成签到,获得积分10
4秒前
hu970发布了新的文献求助10
4秒前
无情飞松发布了新的文献求助10
5秒前
6秒前
7秒前
jingle完成签到,获得积分10
7秒前
yangican发布了新的文献求助10
8秒前
科视发布了新的文献求助200
8秒前
8秒前
FangChen完成签到,获得积分20
8秒前
汉堡包应助加百莉采纳,获得10
8秒前
9秒前
9秒前
浮光完成签到,获得积分0
10秒前
10秒前
10秒前
NexusExplorer应助zys采纳,获得10
10秒前
曹牧之发布了新的文献求助20
11秒前
怡然的怜烟应助未来采纳,获得30
11秒前
浮游应助暴躁的月光采纳,获得10
11秒前
11秒前
标致忆丹发布了新的文献求助10
11秒前
12秒前
明月朝灯完成签到,获得积分10
12秒前
whisky发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
111发布了新的文献求助10
14秒前
落寞白曼发布了新的文献求助10
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593