亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced reversible hydrogen storage properties of wrinkled graphene microflowers confined LiBH4 system with high volumetric hydrogen storage capacity

脱氢 石墨烯 氢气储存 材料科学 化学工程 储能 催化作用 限制 纳米技术 化学 复合材料 有机化学 热力学 功率(物理) 工程类 物理 机械工程 合金
作者
Zhenglong Li,Kaicheng Xian,Hao Chen,Mingxia Gao,Shanqing Qu,Meihong Wu,Yaxiong Yang,Wenping Sun,Jiabin Xi,Yongfeng Liu,Xin Zhang,Hongge Pan
出处
期刊:Materials Reports: Energy [Elsevier]
卷期号:: 100249-100249
标识
DOI:10.1016/j.matre.2024.100249
摘要

LiBH4 with high hydrogen storage density, is regarded as one of the most promising hydrogen storage materials. Nevertheless, it suffers from high dehydrogenation temperature and poor reversibility for practical use. Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility. Besides, graphene can serve as supporting materials for LiBH4 catalysts and also destabilize LiBH4 via interfacial reaction. However, graphene has never been used alone as a frame material for nanoconfining LiBH4. In this study, graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH4, and the nanoconfinement effect of graphene was revealed. After loading 70 wt% of LiBH4 and mechanically compressed at 350 MPa, 8.0 wt% of H2 can be released within 100 min at 320 °C, corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L−1 ever reported. Thanks to the nanoconfinement of graphene, the rate-limiting step of dehydrogenation of nanoconfined LiBH4 was changed and its apparent activation energy of the dehydrogenation (107.3 kJ mol−1) was 42 % lower than that of pure LiBH4. Moreover, the formation of the intermediate Li2B12H12 was effectively inhibited, and the stable nanoconfined structure enhanced the reversibility of LiBH4. This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得30
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
ZZZ完成签到,获得积分10
9秒前
羊羊羊发布了新的文献求助10
9秒前
歪歪吸发布了新的文献求助10
9秒前
10秒前
xiaokun发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
王老裂发布了新的文献求助80
15秒前
歪歪吸完成签到,获得积分10
16秒前
北一君完成签到,获得积分10
16秒前
何靖馥琳完成签到,获得积分10
21秒前
丘比特应助库里强采纳,获得10
23秒前
LJL完成签到 ,获得积分10
27秒前
yong完成签到 ,获得积分10
37秒前
42秒前
852应助赫贞采纳,获得10
50秒前
55秒前
MRu发布了新的文献求助10
58秒前
1分钟前
Dr_Zhan完成签到,获得积分10
1分钟前
1分钟前
ayato发布了新的文献求助10
1分钟前
1分钟前
1717发布了新的文献求助30
1分钟前
1分钟前
ayato完成签到,获得积分20
1分钟前
Hello应助2025alex采纳,获得10
1分钟前
李燕完成签到,获得积分20
1分钟前
科研通AI5应助张华采纳,获得30
1分钟前
李爱国应助Xinscribe采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147