Water Body Segmentation of SAR Images Based on SAR Image Reconstruction and an Improved UNet

计算机科学 合成孔径雷达 分割 人工智能 特征(语言学) 图像分割 模式识别(心理学) 计算机视觉 哲学 语言学
作者
Famao Ye,Rengao Zhang,Xiaohua Xu,Kunlin Wu,Pu Zheng,Dajun Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:3
标识
DOI:10.1109/lgrs.2023.3345882
摘要

Water body segmentation utilizing Synthetic Aperture Radar (SAR) images plays a crucial role in water resource and flood monitoring. However, existing SAR water segmentation methods often underutilize the information present in the multiple bands of SAR images. Moreover, U-shaped semantic segmentation algorithms based on convolutional neural networks (CNN) often suffer from the loss of valuable feature information and the neglect of global and local correlations caused by the inclusion of pooling layers. To address these challenges, this letter first generates two novel bands from the VV and VH bands of the SAR images and combines them with the VV band to create a new SAR image as the input for the model. Then, to enhance the model's capacity for feature learning and minimize the risk of overlooking small target water bodies, the letter proposed a water body segmentation model for SAR images that improves upon the UNet model by integrating coordinate attention mechanisms, CBAM and PVTv2. Finally, to tackle the issue of high computational complexity associated with the model, traditional convolutions are substituted with depthwise separable convolutions. The experimental results demonstrate that the proposed method achieves a 1.68% increase in accuracy, a 4.21% increase in MIOU, and a 3.51% increase in F-score when compared to the widely adopted UNet algorithm. Consequently, the proposed model surpasses other algorithms in the domain of water segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的荆完成签到 ,获得积分10
3秒前
NexusExplorer应助啦啦啦采纳,获得10
4秒前
4秒前
糯米完成签到,获得积分10
4秒前
4秒前
andrele应助charles采纳,获得10
5秒前
领导范儿应助安静的幼旋采纳,获得10
7秒前
orixero应助Forest采纳,获得10
8秒前
8秒前
8秒前
ding应助糯米采纳,获得10
8秒前
qinshugg发布了新的文献求助30
9秒前
7ohnny完成签到,获得积分10
9秒前
CodeCraft应助shilong.yang采纳,获得10
11秒前
上官若男应助shilong.yang采纳,获得30
11秒前
华仔应助shilong.yang采纳,获得30
11秒前
研友_ngkyGn应助shilong.yang采纳,获得10
11秒前
11秒前
xx完成签到 ,获得积分10
12秒前
12秒前
211发布了新的文献求助10
12秒前
reliam发布了新的文献求助10
14秒前
安静静槐发布了新的文献求助10
16秒前
16秒前
思源应助211采纳,获得10
17秒前
18秒前
沫荔完成签到 ,获得积分10
18秒前
18秒前
东风发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
22秒前
juedai关注了科研通微信公众号
22秒前
领导范儿应助好运连连采纳,获得10
23秒前
希望天下0贩的0应助啦啦采纳,获得10
23秒前
爆米花应助郭先森采纳,获得10
23秒前
顾矜应助东风采纳,获得10
24秒前
任寒松发布了新的文献求助10
24秒前
柒_l发布了新的文献求助10
25秒前
helly完成签到,获得积分10
25秒前
26秒前
ding应助安静静槐采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719