Structure Design for High-Performance Li-Rich Mn-Based Layered Oxides, O2- or O3-Type Cathodes, What’s Next?

电化学 阴极 氧化物 堆积 氧化还原 材料科学 离子 氧气 纳米技术 工程物理 化学工程 化学 电极 工程类 物理化学 物理 冶金 有机化学
作者
Xiaowen Zhao,Xin Cao,Haoshen Zhou
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (3): 307-315 被引量:9
标识
DOI:10.1021/accountsmr.3c00217
摘要

ConspectusLi-rich layered oxides have received extensive attention as promising high-energy-density cathodes for next-generation Li-ion batteries. Different from traditional cathodes such as LiCoO2, LiFePO4, and Li2MnO4, Li-rich oxides generally can harvest superior discharge capacities exceeding 250 mAh g–1, which originated from the contribution of oxygen redox chemistry. However, lattice oxygen release and irreversible TM transition would induce severe structure distortion and capacity degradation as well as voltage attenuation within Li-rich cathodes during electrochemical processes, which greatly limits their industrial applications in next-generation Li-ion batteries. To address these issues, structure design has been proposed and demonstrated as an efficient strategy to improve both the structural and electrochemical stability of Li-rich oxide cathodes. In particular, burgeoning O2-type Li-rich cathodes designed by adjusting the stacking sequence of oxygen atoms exhibited unique electrochemical properties that are superior to those of the traditional O3 counterparts. Nevertheless, it raises a crucial question regarding the selection of prevailing design prototypes: the O2- or O3-type of Li-rich oxide cathode greatly determines the future development direction of next-generation Li-ion batteries.In this Account, we mainly summarize our recent progress and understanding of the design of the O2- and O3-types from the perspectives of oxygen redox behaviors and structural evolution, aiming to provide insightful guidance for the rational design of high-performance Li-rich cathode materials. This Account begins with presenting representative structure designs based on a layered O3-type platform, including regulations of Li content within both transition metal (TM) and alkali metal (AM) layers and designs of TM proportions and superstructure units. Moreover, unique configuration designs have been combed and discussed in which Li–O–□ and Li–O–Na configurations greatly facilitate the invertibility of oxygen redox reactions. In parallel, when altering the oxygen stacking sequence from ABCABC to ABCB, unique characteristics such as inhibited voltage decay and enhanced cycling stability as well as reversible TM ion migration can be achieved within the O2-type structures, where the synthesis routes and underlying mechanism of reversible TM migration in the O2-type cathodes have been summarized in detail. Additionally, our latest progress on structural designs of Li+ coordination environment regulation and biphasic layered structure were also presented, which could support the elevation of structure stability and cyclability of Li-rich cathodes upon long cycles, paving new structural design directions in addition to prevailing O3- and O2-type counterparts. At last, the challenges faced by the O3- and O2-type cathode materials and consequent solutions have been proposed. We hope this Account can provide fundamental insights and a route map for the proper design of high-energy-density Li-rich cathodes to achieve stable oxygen redox reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
pcx完成签到,获得积分10
1秒前
phd完成签到,获得积分10
2秒前
2秒前
曹志毅完成签到,获得积分10
2秒前
mito发布了新的文献求助10
3秒前
无悔呀发布了新的文献求助10
3秒前
4秒前
君君发布了新的文献求助10
4秒前
Yang完成签到,获得积分10
5秒前
风雨完成签到,获得积分10
5秒前
5秒前
6秒前
彭于晏应助小西采纳,获得30
6秒前
可爱的函函应助布布采纳,获得10
7秒前
8秒前
轩辕德地发布了新的文献求助10
8秒前
nine发布了新的文献求助30
8秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
9秒前
JamesPei应助小敦采纳,获得10
9秒前
今非发布了新的文献求助10
9秒前
李健的小迷弟应助通~采纳,获得30
9秒前
9秒前
9秒前
fanfan44390发布了新的文献求助10
9秒前
Zhang完成签到,获得积分10
10秒前
小二郎应助小田采纳,获得10
11秒前
11秒前
隐形曼青应助liike采纳,获得10
11秒前
phd发布了新的文献求助10
11秒前
11秒前
dingdong发布了新的文献求助30
11秒前
Orange应助清秀的语山采纳,获得50
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
大李包完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794