Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review

计算机科学 目标检测 数据科学 自动化 资源(消歧) 人工智能 系统工程 风险分析(工程) 工程类 业务 机械工程 计算机网络 模式识别(心理学)
作者
Chetan Badgujar,Alwin Poulose,Hao Gan
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2401.10379
摘要

Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yingying完成签到,获得积分10
刚刚
历史真相发布了新的文献求助10
1秒前
整化学发布了新的文献求助10
2秒前
难过的小甜瓜完成签到,获得积分10
3秒前
莫里完成签到,获得积分10
4秒前
向日葵完成签到,获得积分10
5秒前
831143完成签到 ,获得积分0
5秒前
小李完成签到,获得积分10
5秒前
jiabu完成签到,获得积分10
6秒前
XpenG完成签到,获得积分10
7秒前
medzhou完成签到,获得积分10
7秒前
7秒前
Waqas完成签到,获得积分10
8秒前
lili完成签到,获得积分10
8秒前
12345678发布了新的文献求助10
9秒前
时生111完成签到 ,获得积分10
9秒前
等效边界完成签到,获得积分10
10秒前
天天快乐应助绿洲采纳,获得10
10秒前
愉快凌晴完成签到,获得积分10
10秒前
一笑而过发布了新的文献求助10
10秒前
MJX完成签到,获得积分10
11秒前
汉堡包应助JNL采纳,获得10
11秒前
小飞棍完成签到,获得积分10
12秒前
管理想完成签到,获得积分10
12秒前
wuzhoumeng完成签到,获得积分10
13秒前
赘婿应助X先生采纳,获得10
13秒前
13秒前
hhh完成签到,获得积分10
13秒前
明理平文完成签到 ,获得积分10
14秒前
小龅牙吖完成签到,获得积分10
14秒前
幽默的凡完成签到 ,获得积分10
14秒前
austing完成签到,获得积分10
14秒前
假装超人会飞完成签到,获得积分10
14秒前
魔女完成签到,获得积分10
15秒前
Jiang完成签到,获得积分10
15秒前
jiaozhiping完成签到,获得积分10
16秒前
苏远山爱吃西红柿完成签到 ,获得积分10
17秒前
海虎爆破拳完成签到,获得积分10
17秒前
shim完成签到,获得积分10
17秒前
无花果应助123采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249053
求助须知:如何正确求助?哪些是违规求助? 2892387
关于积分的说明 8271490
捐赠科研通 2560723
什么是DOI,文献DOI怎么找? 1389228
科研通“疑难数据库(出版商)”最低求助积分说明 651029
邀请新用户注册赠送积分活动 627870