Near-infrared spectroscopy combined with fuzzy fast pseudoinverse linear discriminant analysis to discriminate mee tea grades

线性判别分析 主成分分析 模式识别(心理学) 人工智能 数学 化学计量学 摩尔-彭罗斯伪逆 判别式 计算机科学 机器学习 反向 几何学
作者
Bin Wu,Wenbo Tang,Jin Zhou,Hong-wen Jia,Hualei Shen,Zuxuan Qi
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (5): e27732-e27732 被引量:6
标识
DOI:10.1016/j.heliyon.2024.e27732
摘要

Mee tea, one of the major types of green tea in China, is often used for export because of its elegant appearance, high fragrance and strong taste. However, the quality of tea differs greatly due to the difference in raw material selection and production technology level. In order to accurately and quickly differentiate different grades of Mee tea, fuzzy fast pseudoinverse linear discriminant analysis (FFPLDA) was proposed based on fast pseudoinverse linear discriminant analysis (FPLDA) for extracting discriminant information from near-infrared (NIR) spectra. Firstly, NIR spectra of Mee tea samples were acquired, and then they were preprocessed by multiplicative scatter correlation (MSC). Secondly, the compression of data was achieved by principal component analysis (PCA). Thirdly, linear discriminant analysis (LDA), FPLDA, FFPLDA and fuzzy Foley-Sammon transformation (FFST) were respectively performed to retrieve discriminant information from NIR data. Finally, the K-nearest neighbor (KNN) was utilized to classify Mee tea grades. In this study, experimental results showed that the accuracy of FFPLDA was higher than that of LDA, FFST and FPLDA. Therefore, NIR spectroscopy coupled with FFPLDA and KNN has a good effect in discrimination of Mee tea grades and also a great application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Cactus应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
在水一方应助壮观以松采纳,获得10
2秒前
无误发布了新的文献求助10
2秒前
3秒前
慕青应助rissun采纳,获得10
4秒前
ll发布了新的文献求助10
4秒前
在水一方应助研友_宋文昊采纳,获得30
6秒前
Xiaoxiao应助虚心柠檬采纳,获得20
11秒前
11111发布了新的文献求助30
11秒前
skbkbe完成签到,获得积分10
11秒前
温柔的夜绿完成签到,获得积分20
11秒前
研友_宋文昊完成签到,获得积分10
12秒前
lishui完成签到 ,获得积分10
13秒前
充电宝应助Wei采纳,获得30
14秒前
15秒前
天天快乐应助笑面客采纳,获得10
15秒前
25秒前
25秒前
CipherSage应助shuiyu采纳,获得10
28秒前
善学以致用应助2202采纳,获得10
28秒前
bkagyin应助XTM采纳,获得10
30秒前
牛马人生完成签到,获得积分10
30秒前
33秒前
35秒前
1234完成签到,获得积分10
36秒前
笑面客发布了新的文献求助10
36秒前
珊珊完成签到,获得积分10
36秒前
38秒前
咕噜发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762751
求助须知:如何正确求助?哪些是违规求助? 3307146
关于积分的说明 10138644
捐赠科研通 3022309
什么是DOI,文献DOI怎么找? 1658994
邀请新用户注册赠送积分活动 792258
科研通“疑难数据库(出版商)”最低求助积分说明 754897