纳米载体
介孔材料
纳米技术
材料科学
药物输送
纳米复合材料
纳米材料
复合数
抗氧化剂
化学工程
碳纤维
化学
有机化学
复合材料
催化作用
工程类
作者
Sneha R. Bhosale,Rakhee R. Bhosale,Rushikesh P. Dhavale,Govind B. Kolekar,Vinod B. Shimpale,Prashant V. Anbhule
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-03-11
卷期号:40 (12): 6471-6483
被引量:3
标识
DOI:10.1021/acs.langmuir.4c00010
摘要
Nanocarriers have attracted considerable interest due to their prospective applications in the delivery of anticancer medications and their distinct bioactivities. Biogenic nanostructures can be effective nanocarriers for delivering drugs as a consequence of sustainable and biodegradable biomass-derived nanostructures that perform specific functions. In this case, a vanadium oxide (V2O5) and mesoporous carbon@V2O5 (C@V) composite was developed as a possible drug delivery system, and its bioactivities, including antioxidant, antibacterial, and anticancer, were investigated. Doxorubicin (DOX), an anticancer drug, was introduced to the nanoparticles, and the loading and release investigation was conducted. Strong interfacial interactions between mesoporous carbon (MC) and V2O5 nanostructures have been found to improve performance in drug loading and release studies and bioactivities. After incubation, the potent anticancer effectiveness was seen based on C@V nanocomposite. This sample was also utilized to research potential biomedical uses as an antioxidant, antibacterial, and anticancer. The most effective antioxidant, the C@V sample (61.2%), exhibited a higher antioxidant activity than the V-2 sample (44.61%). The C@V sample ultimately attained a high DOX loading efficacy of 88%, in comparison to a pure V2O5 sample (V-2) loading efficacy of 80%. Due to the combination of mesoporous carbon and V2O5, which increases specific surface area and surface sites of action as well as the morphology, it proved that the mesoporous carbon@V2O5 composite (C@V) sample demonstrated greater efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI