Origin of La Doping-Induced Endurance Improvement and Wake-up Effect Reduction in Ferroelectric HfO2 Thin Films

铁电性 兴奋剂 掺杂剂 材料科学 电介质 凝聚态物理 氧气 物理 量子力学 光电子学
作者
Tao Yu,Shining Geng,Binjian Zeng,Ge Wang,Zewen Xiao,Yichun Zhou,Min Liao
出处
期刊:Physical review applied [American Physical Society]
卷期号:20 (5) 被引量:1
标识
DOI:10.1103/physrevapplied.20.054052
摘要

Ferroelectric ${\mathrm{Hf}\mathrm{O}}_{2}$ is a promising material for ferroelectric memory applications due to its compatibility with the complementary metal-oxide-semiconductor technology. However, its practical application is hindered by the reliability issues associated with oxygen vacancies (${V}_{\mathrm{O}}$), such as endurance failure and wake-up effect. $\mathrm{La}$ doping is a highly effective approach to improving the endurance and reducing the wake-up effect. In this study, we investigate the origin of these performance improvements in ferroelectric ${\mathrm{Hf}\mathrm{O}}_{2}$ through density functional theory calculations. Our results reveal that the undoped ferroelectric ${\mathrm{Hf}\mathrm{O}}_{2}$ requires a certain amount of ${V}_{\mathrm{O}}$ to stabilize its phase, which can only be achieved under a relatively oxygen-poor condition. However, the neutral charge state of ${V}_{\mathrm{O}}$, stabilized by the Fermi level above the (0/2+) transition level, may cause a dielectric breakdown. $\mathrm{La}$ doping at the $\mathrm{Hf}$ sites significantly reduces the formation enthalpy of ${V}_{\mathrm{O}}$ by pushing down the Fermi level, leading to a moderate concentration of the doubly positive ${V}_{\mathrm{O}}$ $({V}_{\mathrm{O}}^{2+})$ in most of the chemical potential regions. This prevents the dielectric breakdown and improves the device endurance. Furthermore, the presence of $\mathrm{La}$ dopants in ferroelectric ${\mathrm{Hf}\mathrm{O}}_{2}$ significantly increases the diffusion barrier of ${V}_{\mathrm{O}}^{2+}$, reducing the wake-up effect. Our findings provide insights into the design and optimization of ferroelectric films for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
otaro发布了新的文献求助10
1秒前
yinbin完成签到,获得积分10
1秒前
1秒前
独木舟发布了新的文献求助10
1秒前
白衣未央发布了新的文献求助10
1秒前
脑洞疼应助现实的曼荷采纳,获得10
3秒前
3秒前
轩辕德地发布了新的文献求助10
3秒前
三九完成签到,获得积分10
4秒前
orixero应助少年郎采纳,获得10
4秒前
三金发布了新的文献求助10
4秒前
kuku发布了新的文献求助10
4秒前
土豆你个西红柿完成签到 ,获得积分10
5秒前
小余完成签到,获得积分10
5秒前
6秒前
sherry完成签到 ,获得积分10
6秒前
搜集达人应助陈佳琪采纳,获得30
6秒前
xiaohan完成签到,获得积分10
6秒前
独木舟完成签到,获得积分10
6秒前
可爱的函函应助无辜洋葱采纳,获得10
7秒前
完美世界应助瘦瘦的背包采纳,获得10
7秒前
小木棉完成签到,获得积分10
7秒前
威武诺言发布了新的文献求助10
7秒前
7秒前
7秒前
wdn0411完成签到,获得积分10
7秒前
zenoalter完成签到,获得积分10
8秒前
受伤幻桃完成签到,获得积分10
8秒前
lh完成签到,获得积分10
8秒前
9秒前
9秒前
怡然的飞珍完成签到,获得积分10
9秒前
Ava应助luuuuuing采纳,获得30
10秒前
高高千筹完成签到,获得积分10
10秒前
Jasper应助哲000采纳,获得10
11秒前
调皮的天真完成签到 ,获得积分10
11秒前
1ssd应助有风采纳,获得10
11秒前
11秒前
奇奇怪怪完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762