GAN-Based Sub-Instance Augmentation for Open-Pit Mine Change Detection in Remote Sensing Images

计算机科学 数据挖掘 露天开采 人工智能 变更检测 训练集 机器学习 模式识别(心理学) 采矿工程 工程类
作者
Zilin Xie,Jinbao Jiang,Deshuai Yuan,Kangning Li,Zi-wei Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3336658
摘要

Remote sensing change detection (CD) for open-pit mines plays a critical role in both mineral development and environmental conservation. The performance of supervised deep-learning-based CD for open-pit mines is often limited by the amount of available data, necessitating data augmentation. Current CD data augmentation methods mainly focus on image-level, region-level and instance-level transformations. However, mining area changes occur at a finer sub-instance level, leading to suboptimal performance of existing methods. Therefore, this study proposes a novel data augmentation method named generative adversarial network-based sub-instance augmentation (GSIA). This method enables the generation of realistic and diverse CD samples using unchanged data from mining areas to address the issue of data scarcity in open-pit mine CD. GSIA comprises three steps. In the first two steps, GSIA achieves sub-instance-level transformations by sequentially applying GAN-based local editing to the labels and images of the mining areas. In the third step, GSIA constructs a synthetic CD dataset by randomly combining the bitemporal data. The effectiveness of GSIA was evaluated by comparing it with fourteen other data augmentation methods on five CD models, and GSIA outperformed all of them. In addition, training solely on synthetic data generated by GSIA achieved an overall accuracy of 97.64% and an F1-score of 78.65%, which were comparable to training with all available real data. Furthermore, GSIA can address the insufficient correlation between the training and test sets in domain adaptation. GSIA plays a significant guiding role in the data augmentation for open-pit mine CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
terryok发布了新的文献求助10
1秒前
李青溟发布了新的文献求助10
2秒前
刘47发布了新的文献求助10
3秒前
Gu发布了新的文献求助10
3秒前
qwp发布了新的文献求助10
3秒前
畅快代柔发布了新的文献求助30
3秒前
伴风望海发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
快乐小狗完成签到,获得积分10
6秒前
6秒前
6秒前
汽水完成签到,获得积分20
6秒前
型男发布了新的文献求助10
6秒前
傻傻的听安完成签到,获得积分10
6秒前
LELE发布了新的文献求助10
6秒前
鸽奈完成签到 ,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393