GAN-Based Sub-Instance Augmentation for Open-Pit Mine Change Detection in Remote Sensing Images

计算机科学 数据挖掘 露天开采 人工智能 变更检测 训练集 机器学习 模式识别(心理学) 采矿工程 工程类
作者
Zilin Xie,Jinbao Jiang,Deshuai Yuan,Kangning Li,Zi-wei Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3336658
摘要

Remote sensing change detection (CD) for open-pit mines plays a critical role in both mineral development and environmental conservation. The performance of supervised deep-learning-based CD for open-pit mines is often limited by the amount of available data, necessitating data augmentation. Current CD data augmentation methods mainly focus on image-level, region-level and instance-level transformations. However, mining area changes occur at a finer sub-instance level, leading to suboptimal performance of existing methods. Therefore, this study proposes a novel data augmentation method named generative adversarial network-based sub-instance augmentation (GSIA). This method enables the generation of realistic and diverse CD samples using unchanged data from mining areas to address the issue of data scarcity in open-pit mine CD. GSIA comprises three steps. In the first two steps, GSIA achieves sub-instance-level transformations by sequentially applying GAN-based local editing to the labels and images of the mining areas. In the third step, GSIA constructs a synthetic CD dataset by randomly combining the bitemporal data. The effectiveness of GSIA was evaluated by comparing it with fourteen other data augmentation methods on five CD models, and GSIA outperformed all of them. In addition, training solely on synthetic data generated by GSIA achieved an overall accuracy of 97.64% and an F1-score of 78.65%, which were comparable to training with all available real data. Furthermore, GSIA can address the insufficient correlation between the training and test sets in domain adaptation. GSIA plays a significant guiding role in the data augmentation for open-pit mine CD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seemefly完成签到,获得积分10
刚刚
凡雁完成签到,获得积分10
刚刚
1秒前
繁星jia完成签到 ,获得积分10
2秒前
2秒前
少年应助yahonyoyoyo采纳,获得10
2秒前
3秒前
李爱国应助姜博超采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
mumuzi完成签到,获得积分10
3秒前
Mt发布了新的文献求助10
4秒前
芝士椰果发布了新的文献求助10
4秒前
Cuiying完成签到 ,获得积分10
4秒前
5秒前
lixm发布了新的文献求助10
5秒前
ohh发布了新的文献求助10
6秒前
七七发布了新的文献求助10
6秒前
慕青应助无限思真采纳,获得10
6秒前
Uranus发布了新的文献求助10
7秒前
沉默寻凝完成签到,获得积分10
8秒前
Cuiying关注了科研通微信公众号
8秒前
9秒前
9秒前
9秒前
zmhstb发布了新的文献求助10
10秒前
11秒前
维尼完成签到 ,获得积分10
11秒前
阿里嘎多发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
文丽完成签到,获得积分10
12秒前
12秒前
zan完成签到,获得积分20
13秒前
汤汤发布了新的文献求助10
13秒前
13秒前
姜博超发布了新的文献求助10
14秒前
我爱读文献完成签到,获得积分10
14秒前
露露发布了新的文献求助10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277