清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GAN-Based Sub-Instance Augmentation for Open-Pit Mine Change Detection in Remote Sensing Images

计算机科学 数据挖掘 露天开采 人工智能 变更检测 训练集 机器学习 模式识别(心理学) 采矿工程 工程类
作者
Zilin Xie,Jinbao Jiang,Deshuai Yuan,Kangning Li,Zi-wei Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3336658
摘要

Remote sensing change detection (CD) for open-pit mines plays a critical role in both mineral development and environmental conservation. The performance of supervised deep-learning-based CD for open-pit mines is often limited by the amount of available data, necessitating data augmentation. Current CD data augmentation methods mainly focus on image-level, region-level and instance-level transformations. However, mining area changes occur at a finer sub-instance level, leading to suboptimal performance of existing methods. Therefore, this study proposes a novel data augmentation method named generative adversarial network-based sub-instance augmentation (GSIA). This method enables the generation of realistic and diverse CD samples using unchanged data from mining areas to address the issue of data scarcity in open-pit mine CD. GSIA comprises three steps. In the first two steps, GSIA achieves sub-instance-level transformations by sequentially applying GAN-based local editing to the labels and images of the mining areas. In the third step, GSIA constructs a synthetic CD dataset by randomly combining the bitemporal data. The effectiveness of GSIA was evaluated by comparing it with fourteen other data augmentation methods on five CD models, and GSIA outperformed all of them. In addition, training solely on synthetic data generated by GSIA achieved an overall accuracy of 97.64% and an F1-score of 78.65%, which were comparable to training with all available real data. Furthermore, GSIA can address the insufficient correlation between the training and test sets in domain adaptation. GSIA plays a significant guiding role in the data augmentation for open-pit mine CD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
思源应助甜蜜的丹翠采纳,获得10
1分钟前
li发布了新的文献求助10
1分钟前
搜集达人应助科研通管家采纳,获得30
1分钟前
隐形曼青应助科研通管家采纳,获得20
1分钟前
甜蜜的丹翠完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
cclyfan完成签到,获得积分10
2分钟前
2分钟前
陶醉巧凡完成签到,获得积分10
3分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
浮游应助lawang采纳,获得10
4分钟前
iNk应助lawang采纳,获得10
4分钟前
科研通AI2S应助lawang采纳,获得10
4分钟前
Akim应助lawang采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
饺子猫完成签到,获得积分10
5分钟前
5分钟前
lawang完成签到,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
7分钟前
朱文韬发布了新的文献求助10
7分钟前
朱文韬完成签到,获得积分10
7分钟前
平淡卿完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
li发布了新的文献求助10
7分钟前
kasumi完成签到 ,获得积分20
7分钟前
li完成签到,获得积分10
8分钟前
krajicek完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117