已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GAN-Based Sub-Instance Augmentation for Open-Pit Mine Change Detection in Remote Sensing Images

计算机科学 数据挖掘 露天开采 人工智能 变更检测 训练集 机器学习 模式识别(心理学) 采矿工程 工程类
作者
Zilin Xie,Jinbao Jiang,Deshuai Yuan,Kangning Li,Zi-wei Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19
标识
DOI:10.1109/tgrs.2023.3336658
摘要

Remote sensing change detection (CD) for open-pit mines plays a critical role in both mineral development and environmental conservation. The performance of supervised deep-learning-based CD for open-pit mines is often limited by the amount of available data, necessitating data augmentation. Current CD data augmentation methods mainly focus on image-level, region-level and instance-level transformations. However, mining area changes occur at a finer sub-instance level, leading to suboptimal performance of existing methods. Therefore, this study proposes a novel data augmentation method named generative adversarial network-based sub-instance augmentation (GSIA). This method enables the generation of realistic and diverse CD samples using unchanged data from mining areas to address the issue of data scarcity in open-pit mine CD. GSIA comprises three steps. In the first two steps, GSIA achieves sub-instance-level transformations by sequentially applying GAN-based local editing to the labels and images of the mining areas. In the third step, GSIA constructs a synthetic CD dataset by randomly combining the bitemporal data. The effectiveness of GSIA was evaluated by comparing it with fourteen other data augmentation methods on five CD models, and GSIA outperformed all of them. In addition, training solely on synthetic data generated by GSIA achieved an overall accuracy of 97.64% and an F1-score of 78.65%, which were comparable to training with all available real data. Furthermore, GSIA can address the insufficient correlation between the training and test sets in domain adaptation. GSIA plays a significant guiding role in the data augmentation for open-pit mine CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丘比特应助wang采纳,获得10
3秒前
林林发布了新的文献求助10
5秒前
昏睡的半鬼完成签到 ,获得积分10
7秒前
激情的鼠标完成签到,获得积分10
8秒前
Owen应助发条曹采纳,获得10
8秒前
16秒前
18秒前
情怀应助帅气面包采纳,获得10
18秒前
不安青牛应助兴奋的宛亦采纳,获得30
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
22秒前
23秒前
Lucas应助粒粒采纳,获得10
23秒前
123发布了新的文献求助10
23秒前
24秒前
发条曹发布了新的文献求助10
24秒前
隐形初雪完成签到 ,获得积分10
29秒前
科目三应助李龙波采纳,获得10
30秒前
31秒前
31秒前
少年完成签到,获得积分10
31秒前
景辣条应助黄钰采纳,获得10
32秒前
32秒前
神明完成签到,获得积分10
33秒前
35秒前
难过的人生完成签到 ,获得积分10
35秒前
神明发布了新的文献求助10
36秒前
38秒前
38秒前
40秒前
隐形曼青应助神明采纳,获得10
41秒前
火华完成签到 ,获得积分10
42秒前
youngbin关注了科研通微信公众号
43秒前
gggghhhh发布了新的文献求助10
44秒前
叡叡发布了新的文献求助10
44秒前
rFsu66Aiir留下了新的社区评论
46秒前
47秒前
来兮完成签到,获得积分10
47秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801581
关于积分的说明 7845485
捐赠科研通 2459100
什么是DOI,文献DOI怎么找? 1309058
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727