GAN-Based Sub-Instance Augmentation for Open-Pit Mine Change Detection in Remote Sensing Images

计算机科学 数据挖掘 露天开采 人工智能 变更检测 训练集 机器学习 模式识别(心理学) 采矿工程 工程类
作者
Zilin Xie,Jinbao Jiang,Deshuai Yuan,Kangning Li,Zi-wei Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:3
标识
DOI:10.1109/tgrs.2023.3336658
摘要

Remote sensing change detection (CD) for open-pit mines plays a critical role in both mineral development and environmental conservation. The performance of supervised deep-learning-based CD for open-pit mines is often limited by the amount of available data, necessitating data augmentation. Current CD data augmentation methods mainly focus on image-level, region-level and instance-level transformations. However, mining area changes occur at a finer sub-instance level, leading to suboptimal performance of existing methods. Therefore, this study proposes a novel data augmentation method named generative adversarial network-based sub-instance augmentation (GSIA). This method enables the generation of realistic and diverse CD samples using unchanged data from mining areas to address the issue of data scarcity in open-pit mine CD. GSIA comprises three steps. In the first two steps, GSIA achieves sub-instance-level transformations by sequentially applying GAN-based local editing to the labels and images of the mining areas. In the third step, GSIA constructs a synthetic CD dataset by randomly combining the bitemporal data. The effectiveness of GSIA was evaluated by comparing it with fourteen other data augmentation methods on five CD models, and GSIA outperformed all of them. In addition, training solely on synthetic data generated by GSIA achieved an overall accuracy of 97.64% and an F1-score of 78.65%, which were comparable to training with all available real data. Furthermore, GSIA can address the insufficient correlation between the training and test sets in domain adaptation. GSIA plays a significant guiding role in the data augmentation for open-pit mine CD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yhh发布了新的文献求助10
1秒前
JamesPei应助典雅的俊驰采纳,获得10
2秒前
5秒前
游一发布了新的文献求助10
5秒前
1056720198发布了新的文献求助10
5秒前
未du发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
小豹子完成签到,获得积分10
6秒前
酷波er应助bailubailing采纳,获得20
7秒前
7秒前
你好完成签到,获得积分10
7秒前
大个应助阿静采纳,获得10
8秒前
8秒前
9秒前
10秒前
10秒前
机灵水卉发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
美亲发布了新的文献求助10
12秒前
12秒前
12秒前
大胆的飞荷完成签到,获得积分10
12秒前
15秒前
15秒前
健忘的曼青完成签到,获得积分20
15秒前
林摆摆完成签到,获得积分10
15秒前
CodeCraft应助zg采纳,获得10
16秒前
16秒前
wait发布了新的文献求助10
16秒前
深林狼发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
17秒前
创不可贴发布了新的文献求助10
17秒前
丛士乔完成签到 ,获得积分10
17秒前
littleknees发布了新的文献求助10
17秒前
独特芝麻发布了新的文献求助10
19秒前
苗条的元风完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243