Multimodal Data-Assimilation using the Nonparametric Probabilistic Method for Model-Form Uncertainty Quantification, Stochastic Model Updating, and Digital Twinning

计算机科学 概率逻辑 数据同化 非参数统计 不确定度量化 数据建模 随机建模 测量不确定度 随机过程 算法 数据挖掘 人工智能 数学 机器学习 计量经济学 统计 数据库 物理 气象学
作者
Marie Jo Azzi,Charbel Farhat
标识
DOI:10.2514/6.2024-0578
摘要

The nonparametric probabilistic method (NPM) introduced in [1] is a physics-based machine learning method for performing model-form (MF) uncertainty quantiőcation (UQ), model updating, and digital twinning. It extracts from experimental, test, operational, or even high-dimensional numerical but sparse data ś collectively referred to here as łreferencež data ś information not captured by a deterministic, low-dimensional, real-time computational model; and infuses it into a łhyperparameterizedž, stochastic version of the real-time model. NPM performs the aforementioned infusion by solving an inverse statistical problem formulated in terms of the hyperparameters and designed such that the mean value and statistical ŕuctuations of some quantities of interest (QoIs) predicted using the real-time stochastic model match target values obtained from the reference data. The performance of NPM hinges upon the efficient minimization of the loss function underlying the formulation of the inverse problem. Because this function is stochastic and nonconvex, it is prone to getting trapped in suboptimal local minima. This scenario is exacerbated when the reference data is scarce, as this compromises the well-posedness of the inverse problem. The present paper addresses these issues by adopting the squared quadratic Wasserstein distance as the measure of dissimilarity between two different sets of data due to its attractive convexity properties, and adapting it to the context of NPM; and by reformulating NPM's inverse statistical problem as a multimodal data-assimilation problem that leverages other available information besides the reference data. The potential of the resulting enhanced NPM for MF-UQ, model updating, and digital twinning is demonstrated using numerical simulations relevant to various structural dynamics applications, including structural health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hu完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
甜瓜不熟完成签到,获得积分10
1秒前
超级的千青完成签到 ,获得积分10
1秒前
wwx完成签到,获得积分10
1秒前
JustinHarry完成签到,获得积分10
1秒前
mario完成签到 ,获得积分10
2秒前
焱阳发布了新的文献求助10
2秒前
lixin发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
香蕉爆米花完成签到,获得积分10
4秒前
4秒前
充电宝应助成就的尔曼采纳,获得10
4秒前
4秒前
5秒前
6秒前
恒河鲤完成签到,获得积分10
6秒前
6秒前
请叫我风吹麦浪应助cindy采纳,获得10
7秒前
7秒前
科研通AI5应助shengdong采纳,获得10
7秒前
曜晟发布了新的文献求助10
7秒前
8秒前
343386625发布了新的文献求助20
8秒前
8秒前
8秒前
kaka发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
bird完成签到,获得积分10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667692
求助须知:如何正确求助?哪些是违规求助? 3226209
关于积分的说明 9768461
捐赠科研通 2936216
什么是DOI,文献DOI怎么找? 1608183
邀请新用户注册赠送积分活动 759531
科研通“疑难数据库(出版商)”最低求助积分说明 735404