已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a machine learning prediction model for perioperative red blood cell transfusions in cardiac surgery

医学 围手术期 心脏外科 概化理论 逻辑回归 红细胞输注 血液管理 体外循环 急诊医学 输血 内科学 心脏病学 外科 数学 统计
作者
Qian Li,Hong Lv,Yuye Chen,Jingjia Shen,Jia Shi,Chenghui Zhou,Fuxia Yan
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:184: 105343-105343 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105343
摘要

Several machine learning (ML) models have been used in perioperative red blood cell (RBC) transfusion risk for cardiac surgery with limited generalizability and no external validation. Hence, we sought to develop and comprehensively externally validate a ML model in a large dataset to estimate RBC transfusion in cardiac surgery with cardiopulmonary bypass (CPB). A retrospective analysis of a multicenter clinical trial (NCT03782350). The study patients who underwent cardiac surgery with CPB came from four cardiac centers in China and Medical Information Mart for Intensive Cared (MIMIC-IV) dataset. Data from Fuwai Hospital were used to develop an individualized prediction model for RBC transfusion. The model was externally validated in the data from three other centers and MIMIC-IV dataset. Twelve models were constructed. A total of 11,201 eligible patients were included in the model development (2420 in Fuwai Hospital) and external validation (563 in the other three centers and 8218 in the MIMIC-IV dataset). A significant difference was observed between the Logistic Regression and CatboostClassifier (0.72 Vs. 0.74, P = 0.031) or RandomForestClassifier (0.72 Vs. 0.75 p = 0.012) in the external validation and MIMIV-IV datasets (age ≤ 70:0.63 Vs. 0.71, p < 0.001; age > 70:0.63 Vs. 0.70, 0.63 Vs. 0.71, p < 0.001). The CatboostClassifier and RandomForestClassifier model was comparable in development (0.83 Vs. 0.82, p = 0.419), external (0.74 Vs. 0.75, p = 0.268), and MIMIC-IV datasets (age ≤ 70: 0.71 Vs. 0.71, p = 0.574; age > 70: 0.70 Vs. 0.71, p = 0.981). Of note, they outperformed other ML models with excellent discrimination and calibration. The CatboostClassifier and RandomForestClassifier models achieved higher area under precision-recall curve and lower brier loss score in validation and MIMIC-IV datasets. Additionally, we confirmed that low preoperative hemoglobin, low body mass index, old age, and female sex increased the risk of RBC transfusion. In our study, enrolling a broad range of cardiovascular surgeries with CPB and utilizing a restrictive RBC transfusion strategy, robustly validates the generalizability of ML algorithms for predicting RBC transfusion risk. Notably, the CatboostClassifier and RandomForestClassifier exhibit strong external clinical applicability, underscoring their potential for widespread adoption. This study provides compelling evidence supporting the efficacy and practical value of ML-based approaches in enhancing transfusion risk prediction in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue完成签到 ,获得积分10
2秒前
芒果发布了新的文献求助10
2秒前
3秒前
小管发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
栀初发布了新的文献求助10
8秒前
轩辕冰夏发布了新的文献求助200
10秒前
东方欲晓发布了新的文献求助10
10秒前
Xshirley205发布了新的文献求助30
10秒前
依然灬聆听完成签到,获得积分10
11秒前
小管完成签到,获得积分10
11秒前
lss发布了新的文献求助10
11秒前
小郭完成签到,获得积分10
12秒前
深情安青应助粗暴的访天采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
小郭发布了新的文献求助10
15秒前
Owen应助downdown采纳,获得10
15秒前
yuan完成签到,获得积分10
17秒前
慕青应助如初采纳,获得10
18秒前
19秒前
20秒前
隐形曼青应助潘榆采纳,获得10
20秒前
21秒前
张鱼小丸子完成签到,获得积分10
22秒前
Seven完成签到,获得积分10
24秒前
Rain1god发布了新的文献求助10
25秒前
搜集达人应助嘿嘿江采纳,获得10
25秒前
小马甲应助lss采纳,获得10
28秒前
28秒前
31秒前
李爱国应助郭宇轩采纳,获得10
32秒前
wab完成签到,获得积分0
33秒前
33秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207538
求助须知:如何正确求助?哪些是违规求助? 2856919
关于积分的说明 8107670
捐赠科研通 2522398
什么是DOI,文献DOI怎么找? 1355582
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613522