Development and validation of a machine learning prediction model for perioperative red blood cell transfusions in cardiac surgery

医学 围手术期 心脏外科 概化理论 逻辑回归 红细胞输注 血液管理 体外循环 急诊医学 输血 内科学 心脏病学 外科 统计 数学
作者
Qian Li,Hong Lv,Yuye Chen,Jingjia Shen,Jia Shi,Chenghui Zhou,Fuxia Yan
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:184: 105343-105343 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105343
摘要

Several machine learning (ML) models have been used in perioperative red blood cell (RBC) transfusion risk for cardiac surgery with limited generalizability and no external validation. Hence, we sought to develop and comprehensively externally validate a ML model in a large dataset to estimate RBC transfusion in cardiac surgery with cardiopulmonary bypass (CPB). A retrospective analysis of a multicenter clinical trial (NCT03782350). The study patients who underwent cardiac surgery with CPB came from four cardiac centers in China and Medical Information Mart for Intensive Cared (MIMIC-IV) dataset. Data from Fuwai Hospital were used to develop an individualized prediction model for RBC transfusion. The model was externally validated in the data from three other centers and MIMIC-IV dataset. Twelve models were constructed. A total of 11,201 eligible patients were included in the model development (2420 in Fuwai Hospital) and external validation (563 in the other three centers and 8218 in the MIMIC-IV dataset). A significant difference was observed between the Logistic Regression and CatboostClassifier (0.72 Vs. 0.74, P = 0.031) or RandomForestClassifier (0.72 Vs. 0.75 p = 0.012) in the external validation and MIMIV-IV datasets (age ≤ 70:0.63 Vs. 0.71, p < 0.001; age > 70:0.63 Vs. 0.70, 0.63 Vs. 0.71, p < 0.001). The CatboostClassifier and RandomForestClassifier model was comparable in development (0.83 Vs. 0.82, p = 0.419), external (0.74 Vs. 0.75, p = 0.268), and MIMIC-IV datasets (age ≤ 70: 0.71 Vs. 0.71, p = 0.574; age > 70: 0.70 Vs. 0.71, p = 0.981). Of note, they outperformed other ML models with excellent discrimination and calibration. The CatboostClassifier and RandomForestClassifier models achieved higher area under precision-recall curve and lower brier loss score in validation and MIMIC-IV datasets. Additionally, we confirmed that low preoperative hemoglobin, low body mass index, old age, and female sex increased the risk of RBC transfusion. In our study, enrolling a broad range of cardiovascular surgeries with CPB and utilizing a restrictive RBC transfusion strategy, robustly validates the generalizability of ML algorithms for predicting RBC transfusion risk. Notably, the CatboostClassifier and RandomForestClassifier exhibit strong external clinical applicability, underscoring their potential for widespread adoption. This study provides compelling evidence supporting the efficacy and practical value of ML-based approaches in enhancing transfusion risk prediction in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助yu采纳,获得10
刚刚
薄荷味发布了新的文献求助10
刚刚
冰菱发布了新的文献求助10
1秒前
Zxj发布了新的文献求助10
1秒前
呱呱完成签到 ,获得积分10
1秒前
2秒前
星先生发布了新的文献求助10
2秒前
2秒前
3秒前
活力谷菱发布了新的文献求助10
3秒前
4秒前
zhenglingying发布了新的文献求助10
4秒前
4秒前
ZS-发布了新的文献求助10
4秒前
4秒前
Goldfish完成签到,获得积分10
4秒前
5U完成签到,获得积分10
4秒前
悠悠发布了新的文献求助10
4秒前
Invariant完成签到,获得积分10
4秒前
4秒前
wshwx发布了新的文献求助50
5秒前
星辰大海应助HCl采纳,获得10
5秒前
LSC完成签到,获得积分10
5秒前
5秒前
隐形曼青应助miaomiao采纳,获得10
6秒前
SOTA完成签到,获得积分20
6秒前
6秒前
tt完成签到,获得积分10
6秒前
慕子默完成签到,获得积分10
6秒前
隐形曼青应助rixinsu采纳,获得10
7秒前
7秒前
7秒前
7秒前
Owen应助漂亮的傀斗采纳,获得10
7秒前
科研通AI6应助xiaoliu采纳,获得10
7秒前
深情安青应助ww采纳,获得10
7秒前
怕黑的傲蕾完成签到,获得积分10
8秒前
LYL发布了新的文献求助10
8秒前
8秒前
科研通AI6应助拾年采纳,获得10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498