Development and validation of a machine learning prediction model for perioperative red blood cell transfusions in cardiac surgery

医学 围手术期 心脏外科 概化理论 逻辑回归 红细胞输注 血液管理 体外循环 急诊医学 输血 内科学 心脏病学 外科 统计 数学
作者
Qian Li,Hong Lv,Yuye Chen,Jingjia Shen,Jia Shi,Chenghui Zhou,Fuxia Yan
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:184: 105343-105343 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105343
摘要

Several machine learning (ML) models have been used in perioperative red blood cell (RBC) transfusion risk for cardiac surgery with limited generalizability and no external validation. Hence, we sought to develop and comprehensively externally validate a ML model in a large dataset to estimate RBC transfusion in cardiac surgery with cardiopulmonary bypass (CPB). A retrospective analysis of a multicenter clinical trial (NCT03782350). The study patients who underwent cardiac surgery with CPB came from four cardiac centers in China and Medical Information Mart for Intensive Cared (MIMIC-IV) dataset. Data from Fuwai Hospital were used to develop an individualized prediction model for RBC transfusion. The model was externally validated in the data from three other centers and MIMIC-IV dataset. Twelve models were constructed. A total of 11,201 eligible patients were included in the model development (2420 in Fuwai Hospital) and external validation (563 in the other three centers and 8218 in the MIMIC-IV dataset). A significant difference was observed between the Logistic Regression and CatboostClassifier (0.72 Vs. 0.74, P = 0.031) or RandomForestClassifier (0.72 Vs. 0.75 p = 0.012) in the external validation and MIMIV-IV datasets (age ≤ 70:0.63 Vs. 0.71, p < 0.001; age > 70:0.63 Vs. 0.70, 0.63 Vs. 0.71, p < 0.001). The CatboostClassifier and RandomForestClassifier model was comparable in development (0.83 Vs. 0.82, p = 0.419), external (0.74 Vs. 0.75, p = 0.268), and MIMIC-IV datasets (age ≤ 70: 0.71 Vs. 0.71, p = 0.574; age > 70: 0.70 Vs. 0.71, p = 0.981). Of note, they outperformed other ML models with excellent discrimination and calibration. The CatboostClassifier and RandomForestClassifier models achieved higher area under precision-recall curve and lower brier loss score in validation and MIMIC-IV datasets. Additionally, we confirmed that low preoperative hemoglobin, low body mass index, old age, and female sex increased the risk of RBC transfusion. In our study, enrolling a broad range of cardiovascular surgeries with CPB and utilizing a restrictive RBC transfusion strategy, robustly validates the generalizability of ML algorithms for predicting RBC transfusion risk. Notably, the CatboostClassifier and RandomForestClassifier exhibit strong external clinical applicability, underscoring their potential for widespread adoption. This study provides compelling evidence supporting the efficacy and practical value of ML-based approaches in enhancing transfusion risk prediction in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
魏少爷发布了新的文献求助10
2秒前
3秒前
阳光的班发布了新的文献求助10
3秒前
npicco完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
totoro发布了新的文献求助10
7秒前
积极从蕾发布了新的文献求助10
7秒前
醉玉颓山完成签到,获得积分10
7秒前
8秒前
SYLH应助Brave采纳,获得200
9秒前
卢沫含发布了新的文献求助10
10秒前
ding应助聪明的豌豆采纳,获得10
10秒前
11秒前
脑洞疼应助toxic采纳,获得10
12秒前
12秒前
12秒前
轩辕寄风应助烂漫的书南采纳,获得20
14秒前
隐形曼青应助皮念寒采纳,获得10
14秒前
UsihaGuwalgiya完成签到,获得积分10
15秒前
15秒前
小建发布了新的文献求助10
16秒前
小马甲应助Hexagram采纳,获得10
16秒前
nabixx完成签到,获得积分10
16秒前
幽默的惮发布了新的文献求助10
17秒前
Jmting发布了新的文献求助10
17秒前
科研通AI5应助zhangzhang采纳,获得10
18秒前
18秒前
可爱的函函应助asparagine采纳,获得10
18秒前
Newky发布了新的文献求助10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980224
求助须知:如何正确求助?哪些是违规求助? 3524191
关于积分的说明 11220260
捐赠科研通 3261653
什么是DOI,文献DOI怎么找? 1800792
邀请新用户注册赠送积分活动 879296
科研通“疑难数据库(出版商)”最低求助积分说明 807232