Development and validation of a machine learning prediction model for perioperative red blood cell transfusions in cardiac surgery

医学 围手术期 心脏外科 概化理论 逻辑回归 红细胞输注 血液管理 体外循环 急诊医学 输血 内科学 心脏病学 外科 数学 统计
作者
Qian Li,Hong Lv,Yuye Chen,Jingjia Shen,Jia Shi,Chenghui Zhou,Fuxia Yan
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:184: 105343-105343 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105343
摘要

Several machine learning (ML) models have been used in perioperative red blood cell (RBC) transfusion risk for cardiac surgery with limited generalizability and no external validation. Hence, we sought to develop and comprehensively externally validate a ML model in a large dataset to estimate RBC transfusion in cardiac surgery with cardiopulmonary bypass (CPB). A retrospective analysis of a multicenter clinical trial (NCT03782350). The study patients who underwent cardiac surgery with CPB came from four cardiac centers in China and Medical Information Mart for Intensive Cared (MIMIC-IV) dataset. Data from Fuwai Hospital were used to develop an individualized prediction model for RBC transfusion. The model was externally validated in the data from three other centers and MIMIC-IV dataset. Twelve models were constructed. A total of 11,201 eligible patients were included in the model development (2420 in Fuwai Hospital) and external validation (563 in the other three centers and 8218 in the MIMIC-IV dataset). A significant difference was observed between the Logistic Regression and CatboostClassifier (0.72 Vs. 0.74, P = 0.031) or RandomForestClassifier (0.72 Vs. 0.75 p = 0.012) in the external validation and MIMIV-IV datasets (age ≤ 70:0.63 Vs. 0.71, p < 0.001; age > 70:0.63 Vs. 0.70, 0.63 Vs. 0.71, p < 0.001). The CatboostClassifier and RandomForestClassifier model was comparable in development (0.83 Vs. 0.82, p = 0.419), external (0.74 Vs. 0.75, p = 0.268), and MIMIC-IV datasets (age ≤ 70: 0.71 Vs. 0.71, p = 0.574; age > 70: 0.70 Vs. 0.71, p = 0.981). Of note, they outperformed other ML models with excellent discrimination and calibration. The CatboostClassifier and RandomForestClassifier models achieved higher area under precision-recall curve and lower brier loss score in validation and MIMIC-IV datasets. Additionally, we confirmed that low preoperative hemoglobin, low body mass index, old age, and female sex increased the risk of RBC transfusion. In our study, enrolling a broad range of cardiovascular surgeries with CPB and utilizing a restrictive RBC transfusion strategy, robustly validates the generalizability of ML algorithms for predicting RBC transfusion risk. Notably, the CatboostClassifier and RandomForestClassifier exhibit strong external clinical applicability, underscoring their potential for widespread adoption. This study provides compelling evidence supporting the efficacy and practical value of ML-based approaches in enhancing transfusion risk prediction in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
小马甲应助高高的数据线采纳,获得10
3秒前
3秒前
mm完成签到,获得积分20
4秒前
4秒前
yang完成签到,获得积分10
5秒前
ING完成签到,获得积分10
5秒前
星辰大海应助aaaaa采纳,获得10
7秒前
彩色的孤兰完成签到,获得积分10
8秒前
的的完成签到,获得积分10
8秒前
情怀应助flexiblemonkeys采纳,获得10
8秒前
LGJ完成签到,获得积分10
8秒前
9秒前
姜恒发布了新的文献求助10
11秒前
cora发布了新的文献求助20
12秒前
12秒前
728发布了新的文献求助10
12秒前
13秒前
小遇完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
哈哈哈哈发布了新的文献求助10
17秒前
nb发布了新的文献求助10
18秒前
19秒前
Wu发布了新的文献求助10
19秒前
舒心安柏完成签到 ,获得积分10
19秒前
贞花66完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
白泽阳发布了新的文献求助10
21秒前
21秒前
寒假工发布了新的文献求助10
22秒前
22秒前
兴奋的天蓉完成签到 ,获得积分10
24秒前
24秒前
健忘的雨安完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406