小梁网
炎症
细胞生物学
生物
癌症研究
医学
免疫学
青光眼
神经科学
作者
Jingjing Zhang,Xiaofeng Yang,Yao Zong,Yu Chen,Xian Yang
标识
DOI:10.1016/j.intimp.2024.111646
摘要
Glaucoma, an insidious ophthalmic pathology, is typified by an aberrant surge in intraocular pressure (IOP) which culminates in the degeneration of retinal ganglion cells and optical neuropathy. The mitigation of IOP stands as the principal therapeutic strategy to forestall vision loss. The trabecular meshwork's (TM) integrity and functionality are pivotal in modulating aqueous humor egress. Despite their potential significance in glaucomatous pathophysiology, the implications of microRNAs (miRNAs) on TM functionality remain largely enigmatic. Transcriptomic sequencing was employed to delineate the miRNA expression paradigm within the limbal region of rodent glaucoma models, aiming to elucidate miRNA-mediated mechanisms within the glaucomatous milieu. Analytical scrutiny of the sequencing data disclosed 174 miRNAs with altered expression profiles, partitioned into 86 miRNAs with augmented expression and 88 with diminished expression. Notably, miRNAs such as hsa-miR-196b-5p were identified as having substantial expression discrepancies with concomitant statistical robustness, suggesting a potential contributory role in glaucomatous progression. Subsequent in vitro assays affirmed that miR-196b-5p augments the inflammatory cascade within immortalized human TM (iHTM) and glaucoma-induced human TM (GTM3) cells, concurrently attenuating cellular proliferation, motility, and cytoskeletal architecture. Additionally, miR-196b-5p implicates itself in the regulation of IOP and inflammatory processes in rodent models. At a mechanistic level, miR-196b-5p modulates its effects via the targeted repression of Nras (neuroblastoma RAS viral oncogene homolog). Collectively, these transcriptomic investigations furnish a comprehensive vista into the regulatory roles of miRNAs within the glaucomatous framework, and the identification of differentially expressed miRNAs alongside their targets could potentially illuminate novel molecular pathways implicated in glaucoma, thereby aiding in the development of innovative therapeutic avenues.
科研通智能强力驱动
Strongly Powered by AbleSci AI