A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients

肺病 恶化 慢性阻塞性肺病 医学 慢性阻塞性肺疾病急性加重期 机器学习 接收机工作特性 人工智能 计算机科学 物理疗法 内科学
作者
Huiming Yin,Kun Wang,Ruyu Yang,Yanfang Tan,Qiang Li,Wei Zhu,Suzi Sung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108005-108005 被引量:10
标识
DOI:10.1016/j.cmpb.2023.108005
摘要

This study utilized intelligent devices to remotely monitor patients with chronic obstructive pulmonary disease (COPD), aiming to construct and evaluate machine learning (ML) models that predict the probability of acute exacerbations of COPD (AECOPD). Patients diagnosed with COPD Group C/D at our hospital between March 2019 and June 2021 were enrolled in this study. The diagnosis of COPD Group C/D and AECOPD was based on the GOLD 2018 guidelines. We developed a series of machine learning (ML)-based models, including XGBoost, LightGBM, and CatBoost, to predict AECOPD events. These models utilized data collected from portable spirometers and electronic stethoscopes within a five-day time window. The area under the ROC curve (AUC) was used to assess the effectiveness of the models. A total of 66 patients were enrolled in COPD groups C/D, with 32 in group C and 34 in group D. Using observational data within a five-day time window, the ML models effectively predict AECOPD events, achieving high AUC scores. Among these models, the CatBoost model exhibited superior performance, boasting the highest AUC score (0.9721, 95 % CI: 0.9623–0.9810). Notably, the boosting tree methods significantly outperformed the time-series based methods, thanks to our feature engineering efforts. A post-hoc analysis of the CatBoost model reveals that features extracted from the electronic stethoscope (e.g., max/min vibration energy) hold more importance than those from the portable spirometer. The tree-based boosting models prove to be effective in predicting AECOPD events in our study. Consequently, these models have the potential to enhance remote monitoring, enable early risk assessment, and inform treatment decisions for homebound patients with chronic COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
传奇3应助R1采纳,获得10
2秒前
大力诺言完成签到,获得积分10
3秒前
chiien完成签到 ,获得积分10
6秒前
宋温暖应助lizuosheng1972采纳,获得20
7秒前
ZXD1989完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
阿辉完成签到 ,获得积分10
17秒前
cq_2完成签到,获得积分0
17秒前
唐帅发布了新的文献求助10
17秒前
轻松幼南完成签到 ,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
24秒前
lyw发布了新的文献求助10
24秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
25秒前
情怀应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
xie完成签到 ,获得积分0
29秒前
量子星尘发布了新的文献求助10
39秒前
limecho发布了新的文献求助10
39秒前
坚强的红牛完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
51秒前
量子星尘发布了新的文献求助10
52秒前
研友_5Zl4VZ完成签到,获得积分10
52秒前
Perrylin718完成签到,获得积分10
53秒前
54秒前
wangfang0228完成签到 ,获得积分10
56秒前
58秒前
59秒前
打发打发的发到付电费完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764947
求助须知:如何正确求助?哪些是违规求助? 5556663
关于积分的说明 15406774
捐赠科研通 4899842
什么是DOI,文献DOI怎么找? 2636046
邀请新用户注册赠送积分活动 1584226
关于科研通互助平台的介绍 1539538