A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients

肺病 恶化 慢性阻塞性肺病 医学 慢性阻塞性肺疾病急性加重期 机器学习 接收机工作特性 人工智能 计算机科学 物理疗法 内科学
作者
Huiming Yin,Kun Wang,Ruyu Yang,Yanfang Tan,Qiang Li,Wei Zhu,Suzi Sung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108005-108005 被引量:10
标识
DOI:10.1016/j.cmpb.2023.108005
摘要

This study utilized intelligent devices to remotely monitor patients with chronic obstructive pulmonary disease (COPD), aiming to construct and evaluate machine learning (ML) models that predict the probability of acute exacerbations of COPD (AECOPD). Patients diagnosed with COPD Group C/D at our hospital between March 2019 and June 2021 were enrolled in this study. The diagnosis of COPD Group C/D and AECOPD was based on the GOLD 2018 guidelines. We developed a series of machine learning (ML)-based models, including XGBoost, LightGBM, and CatBoost, to predict AECOPD events. These models utilized data collected from portable spirometers and electronic stethoscopes within a five-day time window. The area under the ROC curve (AUC) was used to assess the effectiveness of the models. A total of 66 patients were enrolled in COPD groups C/D, with 32 in group C and 34 in group D. Using observational data within a five-day time window, the ML models effectively predict AECOPD events, achieving high AUC scores. Among these models, the CatBoost model exhibited superior performance, boasting the highest AUC score (0.9721, 95 % CI: 0.9623–0.9810). Notably, the boosting tree methods significantly outperformed the time-series based methods, thanks to our feature engineering efforts. A post-hoc analysis of the CatBoost model reveals that features extracted from the electronic stethoscope (e.g., max/min vibration energy) hold more importance than those from the portable spirometer. The tree-based boosting models prove to be effective in predicting AECOPD events in our study. Consequently, these models have the potential to enhance remote monitoring, enable early risk assessment, and inform treatment decisions for homebound patients with chronic COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
7秒前
失眠的冬易完成签到 ,获得积分10
10秒前
威武的之桃完成签到 ,获得积分10
10秒前
科研通AI2S应助楼下太吵了采纳,获得10
11秒前
松柏完成签到 ,获得积分10
11秒前
兼听则明完成签到,获得积分10
11秒前
qqqqy完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
minuxSCI完成签到,获得积分10
14秒前
往返完成签到,获得积分10
16秒前
apollo3232完成签到 ,获得积分0
16秒前
ChatGPT发布了新的文献求助10
17秒前
18秒前
liufan完成签到 ,获得积分10
20秒前
23秒前
coasting完成签到,获得积分10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
24秒前
风清扬发布了新的文献求助10
24秒前
橙子完成签到 ,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
ChatGPT发布了新的文献求助10
29秒前
勤劳的颤完成签到 ,获得积分10
32秒前
why完成签到 ,获得积分10
33秒前
yurunxintian完成签到,获得积分10
34秒前
kk完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
36秒前
da49完成签到,获得积分10
37秒前
活力的香芦完成签到,获得积分10
42秒前
gulin完成签到,获得积分10
42秒前
研友_VZGVzn完成签到,获得积分10
43秒前
45秒前
ChatGPT发布了新的文献求助10
46秒前
peng完成签到 ,获得积分10
46秒前
Tbin完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698471
求助须知:如何正确求助?哪些是违规求助? 5124482
关于积分的说明 15221625
捐赠科研通 4853493
什么是DOI,文献DOI怎么找? 2604113
邀请新用户注册赠送积分活动 1555692
关于科研通互助平台的介绍 1513960