A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients

肺病 恶化 慢性阻塞性肺病 医学 慢性阻塞性肺疾病急性加重期 机器学习 接收机工作特性 人工智能 计算机科学 物理疗法 内科学
作者
Huiming Yin,Kun Wang,Ruyu Yang,Yanfang Tan,Qiang Li,Wei Zhu,Suzi Sung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:246: 108005-108005 被引量:1
标识
DOI:10.1016/j.cmpb.2023.108005
摘要

This study utilized intelligent devices to remotely monitor patients with chronic obstructive pulmonary disease (COPD), aiming to construct and evaluate machine learning (ML) models that predict the probability of acute exacerbations of COPD (AECOPD). Patients diagnosed with COPD Group C/D at our hospital between March 2019 and June 2021 were enrolled in this study. The diagnosis of COPD Group C/D and AECOPD was based on the GOLD 2018 guidelines. We developed a series of machine learning (ML)-based models, including XGBoost, LightGBM, and CatBoost, to predict AECOPD events. These models utilized data collected from portable spirometers and electronic stethoscopes within a five-day time window. The area under the ROC curve (AUC) was used to assess the effectiveness of the models. A total of 66 patients were enrolled in COPD groups C/D, with 32 in group C and 34 in group D. Using observational data within a five-day time window, the ML models effectively predict AECOPD events, achieving high AUC scores. Among these models, the CatBoost model exhibited superior performance, boasting the highest AUC score (0.9721, 95 % CI: 0.9623–0.9810). Notably, the boosting tree methods significantly outperformed the time-series based methods, thanks to our feature engineering efforts. A post-hoc analysis of the CatBoost model reveals that features extracted from the electronic stethoscope (e.g., max/min vibration energy) hold more importance than those from the portable spirometer. The tree-based boosting models prove to be effective in predicting AECOPD events in our study. Consequently, these models have the potential to enhance remote monitoring, enable early risk assessment, and inform treatment decisions for homebound patients with chronic COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cm完成签到 ,获得积分10
1秒前
张北海给嘚嘚的求助进行了留言
2秒前
迷路灵槐完成签到,获得积分10
3秒前
游一发布了新的文献求助10
3秒前
3秒前
情怀应助啊啊啊啊采纳,获得10
5秒前
考拉喜欢看文献完成签到 ,获得积分10
6秒前
EED发布了新的文献求助10
8秒前
如意板栗发布了新的文献求助30
8秒前
MOMO完成签到,获得积分10
8秒前
11号楼203完成签到,获得积分10
9秒前
苏有朋完成签到,获得积分10
10秒前
思源应助踏实星星采纳,获得10
10秒前
11秒前
CodeCraft应助MOMO采纳,获得10
12秒前
12秒前
小蘑菇应助lkk采纳,获得10
13秒前
Echo发布了新的文献求助10
13秒前
Fanny_825完成签到,获得积分10
13秒前
13秒前
13秒前
fanyueyue应助wukong采纳,获得10
14秒前
14秒前
充电宝应助寒天帝采纳,获得10
15秒前
苹果花完成签到,获得积分10
16秒前
NINI发布了新的文献求助10
16秒前
tuyoyo发布了新的文献求助10
17秒前
17秒前
17秒前
啊啊啊啊发布了新的文献求助10
18秒前
roking完成签到,获得积分10
18秒前
19秒前
Glory完成签到,获得积分10
19秒前
19秒前
小徐医生完成签到,获得积分10
21秒前
21秒前
慕青应助IR1S0110采纳,获得10
21秒前
踏实星星给踏实星星的求助进行了留言
21秒前
大个应助lang采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496