A machine learning model for predicting acute exacerbation of in-home chronic obstructive pulmonary disease patients

肺病 恶化 慢性阻塞性肺病 医学 慢性阻塞性肺疾病急性加重期 机器学习 接收机工作特性 人工智能 计算机科学 物理疗法 内科学
作者
Huiming Yin,Kun Wang,Ruyu Yang,Yanfang Tan,Qiang Li,Wei Zhu,Suzi Sung
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:246: 108005-108005
标识
DOI:10.1016/j.cmpb.2023.108005
摘要

This study utilized intelligent devices to remotely monitor patients with chronic obstructive pulmonary disease (COPD), aiming to construct and evaluate machine learning (ML) models that predict the probability of acute exacerbations of COPD (AECOPD). Patients diagnosed with COPD Group C/D at our hospital between March 2019 and June 2021 were enrolled in this study. The diagnosis of COPD Group C/D and AECOPD was based on the GOLD 2018 guidelines. We developed a series of machine learning (ML)-based models, including XGBoost, LightGBM, and CatBoost, to predict AECOPD events. These models utilized data collected from portable spirometers and electronic stethoscopes within a five-day time window. The area under the ROC curve (AUC) was used to assess the effectiveness of the models. A total of 66 patients were enrolled in COPD groups C/D, with 32 in group C and 34 in group D. Using observational data within a five-day time window, the ML models effectively predict AECOPD events, achieving high AUC scores. Among these models, the CatBoost model exhibited superior performance, boasting the highest AUC score (0.9721, 95 % CI: 0.9623–0.9810). Notably, the boosting tree methods significantly outperformed the time-series based methods, thanks to our feature engineering efforts. A post-hoc analysis of the CatBoost model reveals that features extracted from the electronic stethoscope (e.g., max/min vibration energy) hold more importance than those from the portable spirometer. The tree-based boosting models prove to be effective in predicting AECOPD events in our study. Consequently, these models have the potential to enhance remote monitoring, enable early risk assessment, and inform treatment decisions for homebound patients with chronic COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助0x1orz采纳,获得10
刚刚
麦片粥发布了新的文献求助10
2秒前
菜菜Cc发布了新的文献求助10
2秒前
mzy完成签到,获得积分10
3秒前
热塑性哈士奇完成签到,获得积分10
5秒前
5秒前
汉堡包应助lixiaofang采纳,获得10
6秒前
tachikoma应助鄂成危采纳,获得10
6秒前
明理土豆完成签到,获得积分10
6秒前
7秒前
不配.应助YC采纳,获得20
7秒前
大模型应助JXY采纳,获得10
8秒前
雪白砖家发布了新的文献求助10
8秒前
9秒前
内向的小凡完成签到,获得积分10
9秒前
xpf完成签到 ,获得积分10
12秒前
irisjlj发布了新的文献求助10
13秒前
unique完成签到,获得积分20
13秒前
13秒前
13秒前
周星星完成签到,获得积分10
16秒前
unique发布了新的文献求助10
18秒前
大个应助周星星采纳,获得10
20秒前
今后应助wang采纳,获得10
23秒前
24秒前
24秒前
24秒前
Echo完成签到,获得积分10
27秒前
麦子完成签到,获得积分10
28秒前
女青完成签到 ,获得积分10
28秒前
29秒前
研俐俐发布了新的文献求助10
29秒前
0x1orz发布了新的文献求助10
29秒前
叛逃的蚂蚁完成签到,获得积分10
30秒前
30秒前
hhh完成签到 ,获得积分10
32秒前
xww发布了新的文献求助10
33秒前
33秒前
wang完成签到,获得积分10
34秒前
paopao发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825