A comprehensive patient-specific prediction model for temporomandibular joint osteoarthritis progression

骨关节炎 颞下颌关节 医学 计算机科学 机器学习 物理疗法 病理 替代医学
作者
Najla Al Turkestani,Tengfei Li,Jonas Bianchi,Marcela Gurgel,Juan Carlos Prieto,Hina Shah,Erika Benavides,Fabiana N. Soki,Yuji Mishina,Margherita Fontana,Arvind Rao,Hongtu Zhu,Lucía Cevidanes
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (8) 被引量:6
标识
DOI:10.1073/pnas.2306132121
摘要

Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助AlexLXJ采纳,获得10
1秒前
充电宝应助美好斓采纳,获得10
1秒前
Adelinelili完成签到,获得积分10
2秒前
Andy.发布了新的文献求助100
2秒前
2秒前
2秒前
贪玩鸵鸟完成签到,获得积分10
2秒前
2秒前
xiao完成签到,获得积分10
3秒前
烟花应助刘婧采纳,获得10
3秒前
ll驳回了Xiaoxiao应助
3秒前
nena发布了新的文献求助10
3秒前
3秒前
可爱的函函应助HCKACECE采纳,获得30
4秒前
ttt77发布了新的文献求助10
4秒前
十八冠六完成签到,获得积分10
4秒前
4秒前
4秒前
liu完成签到,获得积分10
4秒前
4秒前
余海燕发布了新的文献求助10
4秒前
江一帆发布了新的文献求助10
5秒前
莫寒兮完成签到,获得积分10
5秒前
小马甲应助liaoliao采纳,获得10
5秒前
CipherSage应助喜多米430采纳,获得10
5秒前
柿柿如意完成签到,获得积分10
5秒前
roywin完成签到,获得积分10
5秒前
天天快乐应助Qionglin采纳,获得10
6秒前
6秒前
至幸发布了新的文献求助10
7秒前
7秒前
wang发布了新的文献求助10
7秒前
wanci应助易烊干洗采纳,获得10
7秒前
xiao发布了新的文献求助10
8秒前
潇洒的翠丝完成签到,获得积分10
8秒前
tiasn发布了新的文献求助10
8秒前
9秒前
炫酷火锅完成签到,获得积分10
9秒前
li发布了新的文献求助10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416