A batch preparation of large-size graphite plate/SiC coating by CVD: CFD simulation and experimental

材料科学 化学气相沉积 石墨 沉积(地质) 涂层 基质(水族馆) 复合材料 纳米技术 沉积物 生物 海洋学 地质学 古生物学
作者
Kai Cao,Hongyan Li,Shilei Xia,Hongli Liu,Taisheng Yang,Yinghan Zheng,Jianyu Wang,Baolian Zhang,Huan Li
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (10): 16798-16812 被引量:5
标识
DOI:10.1016/j.ceramint.2024.02.117
摘要

Graphite substrate, as one of metal-organic chemical vapor deposition (MOCVD) equipment, often fails due to corrosion and powder loss during service. SiC is an ideal protective coating on graphite substrate surfaces due to its excellent properties. Currently, the preparation of SiC coating on large-size graphite substrates by chemical vapor deposition (CVD) in batches is extensively concerned. The coating was affected by various deposition processes during deposition due to the complexity of CVD. The deposition process of CVD needed to be optimized for batch preparation of large-size graphite plate/SiC coating. However, the temperature field and airflow field distribution inside the CVD equipment and the variation of SiC deposition mass fraction were challenging to obtain by instrumental measurement in the experiments. Herein, the optimization of the CVD process was guided by using Computational Fluid Dynamics (CFD) simulation. Five deposition processes, such as graphite plate placement, diameter, deposition temperature, reaction gas flow, and graphite plate rotational speed, were selected for the investigation. The simulation results were validated by CVD experiments. Optimal process parameters for the batch preparation of large-size graphite plate/SiC coating by CVD were obtained. Guidance for future batch production of coating on a large-size substrate by CVD was provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lysixsixsix完成签到,获得积分10
刚刚
1秒前
jia完成签到,获得积分10
1秒前
欣喜乐天发布了新的文献求助10
1秒前
Kiyotaka完成签到,获得积分10
1秒前
2秒前
季夏发布了新的文献求助10
2秒前
Tingshan发布了新的文献求助20
3秒前
背后的诺言完成签到 ,获得积分20
3秒前
GHOST完成签到,获得积分20
4秒前
4秒前
勤奋的蜗牛完成签到,获得积分20
4秒前
omo发布了新的文献求助10
4秒前
Akim应助糊糊采纳,获得10
5秒前
Zn应助dsjlove采纳,获得10
5秒前
月球宇航员完成签到,获得积分10
5秒前
5秒前
英姑应助亲爱的安德烈采纳,获得10
7秒前
今后应助workwork采纳,获得10
7秒前
7秒前
落后翠柏发布了新的文献求助10
7秒前
淡然凝丹完成签到,获得积分10
7秒前
Y_Jfeng完成签到,获得积分10
8秒前
潼熙甄完成签到 ,获得积分10
9秒前
Lucas应助糖糖采纳,获得10
9秒前
wyblobin发布了新的文献求助10
9秒前
星辰大海应助叶飞荷采纳,获得10
9秒前
wanmiao12完成签到,获得积分10
10秒前
10秒前
11秒前
lmr完成签到,获得积分10
11秒前
gu完成签到 ,获得积分10
12秒前
科研小白完成签到,获得积分10
12秒前
马建国发布了新的文献求助10
12秒前
顾矜应助落后翠柏采纳,获得10
12秒前
搜集达人应助无情的白桃采纳,获得10
12秒前
顾矜应助lina采纳,获得10
12秒前
12秒前
科研通AI5应助南桥采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762