Machine learning based software effort estimation using development-centric features for crowdsourcing platform

计算机科学 机器学习 人工智能 软件 众包 软件开发 估计 任务(项目管理) 数据挖掘 数据科学 工程类 万维网 系统工程 程序设计语言
作者
A. Yasmin,Wasi Haider,Ali Daud,Ameen Banjar
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:28 (1): 299-329
标识
DOI:10.3233/ida-237366
摘要

Crowd-Sourced software development (CSSD) is getting a good deal of attention from the software and research community in recent times. One of the key challenges faced by CSSD platforms is the task selection mechanism which in practice, contains no intelligent scheme. Rather, rule-of-thumb or intuition strategies are employed, leading to biasness and subjectivity. Effort considerations on crowdsourced tasks can offer good foundation for task selection criteria but are not much investigated. Software development effort estimation (SDEE) is quite prevalent domain in software engineering but only investigated for in-house development. For open-sourced or crowdsourced platforms, it is rarely explored. Moreover, Machine learning (ML) techniques are overpowering SDEE with a claim to provide more accurate estimation results. This work aims to conjoin ML-based SDEE to analyze development effort measures on CSSD platform. The purpose is to discover development-oriented features for crowdsourced tasks and analyze performance of ML techniques to find best estimation model on CSSD dataset. TopCoder is selected as target CSSD platform for the study. TopCoder’s development tasks data with development-centric features are extracted, leading to statistical, regression and correlation analysis to justify features’ significance. For effort estimation, 10 ML families with 2 respective techniques are applied to get broader aspect of estimation. Five performance metrices (MSE, RMSE, MMRE, MdMRE, Pred (25) and Welch’s statistical test are incorporated to judge the worth of effort estimation model’s performance. Data analysis results show that selected features of TopCoder pertain reasonable model significance, regression, and correlation measures. Findings of ML effort estimation depicted that best results for TopCoder dataset can be acquired by linear, non-linear regression and SVM family models. To conclude, the study identified the most relevant development features for CSSD platform, confirmed by in-depth data analysis. This reflects careful selection of effort estimation features to offer good basis of accurate ML estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的海完成签到,获得积分10
刚刚
HWJ完成签到,获得积分10
1秒前
pliciyir完成签到 ,获得积分10
1秒前
山雀完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
lamitky发布了新的文献求助10
3秒前
hua完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
mao完成签到,获得积分10
4秒前
5秒前
6秒前
lyg完成签到,获得积分10
7秒前
mlzhan发布了新的文献求助10
7秒前
语行完成签到,获得积分10
7秒前
8秒前
嘤嘤怪啊完成签到 ,获得积分10
8秒前
888关闭了888文献求助
8秒前
8秒前
顾矜应助NicotineZen采纳,获得10
9秒前
曾阿牛发布了新的文献求助10
10秒前
hdh发布了新的文献求助10
10秒前
10秒前
10秒前
小饶发布了新的文献求助10
11秒前
可爱的函函应助生动路人采纳,获得10
12秒前
13秒前
希望天下0贩的0应助lamitky采纳,获得10
13秒前
ceeray23应助一一采纳,获得10
14秒前
uu应助xuhongfei采纳,获得20
14秒前
枪手发布了新的文献求助10
14秒前
雪白凌翠发布了新的文献求助10
17秒前
美梦成真完成签到 ,获得积分10
18秒前
woodenfish发布了新的文献求助20
18秒前
一袋星光完成签到 ,获得积分10
18秒前
邱邱完成签到,获得积分20
18秒前
沉默是金发布了新的文献求助10
19秒前
6121完成签到,获得积分10
19秒前
科研通AI5应助yyh采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181