Machine learning based software effort estimation using development-centric features for crowdsourcing platform

计算机科学 机器学习 人工智能 软件 众包 软件开发 估计 任务(项目管理) 数据挖掘 数据科学 工程类 万维网 系统工程 程序设计语言
作者
A. Yasmin,Wasi Haider,Ali Daud,Ameen Banjar
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:28 (1): 299-329
标识
DOI:10.3233/ida-237366
摘要

Crowd-Sourced software development (CSSD) is getting a good deal of attention from the software and research community in recent times. One of the key challenges faced by CSSD platforms is the task selection mechanism which in practice, contains no intelligent scheme. Rather, rule-of-thumb or intuition strategies are employed, leading to biasness and subjectivity. Effort considerations on crowdsourced tasks can offer good foundation for task selection criteria but are not much investigated. Software development effort estimation (SDEE) is quite prevalent domain in software engineering but only investigated for in-house development. For open-sourced or crowdsourced platforms, it is rarely explored. Moreover, Machine learning (ML) techniques are overpowering SDEE with a claim to provide more accurate estimation results. This work aims to conjoin ML-based SDEE to analyze development effort measures on CSSD platform. The purpose is to discover development-oriented features for crowdsourced tasks and analyze performance of ML techniques to find best estimation model on CSSD dataset. TopCoder is selected as target CSSD platform for the study. TopCoder’s development tasks data with development-centric features are extracted, leading to statistical, regression and correlation analysis to justify features’ significance. For effort estimation, 10 ML families with 2 respective techniques are applied to get broader aspect of estimation. Five performance metrices (MSE, RMSE, MMRE, MdMRE, Pred (25) and Welch’s statistical test are incorporated to judge the worth of effort estimation model’s performance. Data analysis results show that selected features of TopCoder pertain reasonable model significance, regression, and correlation measures. Findings of ML effort estimation depicted that best results for TopCoder dataset can be acquired by linear, non-linear regression and SVM family models. To conclude, the study identified the most relevant development features for CSSD platform, confirmed by in-depth data analysis. This reflects careful selection of effort estimation features to offer good basis of accurate ML estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Syrup发布了新的文献求助10
1秒前
NING0611完成签到,获得积分10
1秒前
2秒前
2秒前
ding应助钙离子采纳,获得10
3秒前
许思真完成签到,获得积分10
3秒前
Deanna完成签到 ,获得积分10
4秒前
4秒前
4秒前
善学以致用应助医路潜行采纳,获得10
6秒前
hongxing liu发布了新的文献求助10
7秒前
简单小土豆完成签到,获得积分10
8秒前
8秒前
小康学弟发布了新的文献求助10
9秒前
10秒前
我是老大应助Deanna采纳,获得10
10秒前
曾经的慕灵完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助LYY采纳,获得10
10秒前
jiangqin123完成签到 ,获得积分10
11秒前
东方发布了新的文献求助10
11秒前
大喜子完成签到,获得积分10
11秒前
13秒前
13秒前
qing完成签到,获得积分10
14秒前
大喜子发布了新的文献求助10
15秒前
xiaohao完成签到 ,获得积分10
15秒前
CipherSage应助6666采纳,获得10
15秒前
15秒前
小马甲应助hongxing liu采纳,获得10
16秒前
16秒前
16秒前
MiYou完成签到,获得积分10
18秒前
医路潜行发布了新的文献求助10
19秒前
XIAOWANG发布了新的文献求助10
19秒前
奋斗映冬发布了新的文献求助10
19秒前
Eternitymaria发布了新的文献求助10
20秒前
何渡星舟完成签到,获得积分10
20秒前
可靠苞络发布了新的文献求助10
20秒前
yitongyao发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498