亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based software effort estimation using development-centric features for crowdsourcing platform

计算机科学 机器学习 人工智能 软件 众包 软件开发 估计 任务(项目管理) 数据挖掘 数据科学 工程类 万维网 系统工程 程序设计语言
作者
A. Yasmin,Wasi Haider,Ali Daud,Ameen Banjar
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:28 (1): 299-329
标识
DOI:10.3233/ida-237366
摘要

Crowd-Sourced software development (CSSD) is getting a good deal of attention from the software and research community in recent times. One of the key challenges faced by CSSD platforms is the task selection mechanism which in practice, contains no intelligent scheme. Rather, rule-of-thumb or intuition strategies are employed, leading to biasness and subjectivity. Effort considerations on crowdsourced tasks can offer good foundation for task selection criteria but are not much investigated. Software development effort estimation (SDEE) is quite prevalent domain in software engineering but only investigated for in-house development. For open-sourced or crowdsourced platforms, it is rarely explored. Moreover, Machine learning (ML) techniques are overpowering SDEE with a claim to provide more accurate estimation results. This work aims to conjoin ML-based SDEE to analyze development effort measures on CSSD platform. The purpose is to discover development-oriented features for crowdsourced tasks and analyze performance of ML techniques to find best estimation model on CSSD dataset. TopCoder is selected as target CSSD platform for the study. TopCoder’s development tasks data with development-centric features are extracted, leading to statistical, regression and correlation analysis to justify features’ significance. For effort estimation, 10 ML families with 2 respective techniques are applied to get broader aspect of estimation. Five performance metrices (MSE, RMSE, MMRE, MdMRE, Pred (25) and Welch’s statistical test are incorporated to judge the worth of effort estimation model’s performance. Data analysis results show that selected features of TopCoder pertain reasonable model significance, regression, and correlation measures. Findings of ML effort estimation depicted that best results for TopCoder dataset can be acquired by linear, non-linear regression and SVM family models. To conclude, the study identified the most relevant development features for CSSD platform, confirmed by in-depth data analysis. This reflects careful selection of effort estimation features to offer good basis of accurate ML estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
wykion完成签到,获得积分10
15秒前
穆子硕完成签到,获得积分10
18秒前
专注水池发布了新的文献求助10
19秒前
19秒前
20秒前
繁荣的珊珊完成签到,获得积分20
20秒前
蜗牛二世完成签到 ,获得积分10
20秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
华仔应助科研通管家采纳,获得10
36秒前
Jasper应助繁荣的珊珊采纳,获得30
40秒前
wyj发布了新的文献求助10
47秒前
一只熊完成签到 ,获得积分10
49秒前
云猫完成签到 ,获得积分10
49秒前
50秒前
50秒前
51秒前
专注水池完成签到,获得积分20
53秒前
55秒前
香蕉酸奶发布了新的文献求助10
59秒前
温暖糖豆完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
drake发布了新的文献求助10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
1分钟前
从容芮完成签到,获得积分0
1分钟前
忧虑的羊发布了新的文献求助10
1分钟前
drake完成签到,获得积分10
1分钟前
1分钟前
阴阳怪气平宝贝完成签到 ,获得积分10
1分钟前
csbj318完成签到 ,获得积分10
1分钟前
所所应助aaaaa采纳,获得50
1分钟前
专注水池关注了科研通微信公众号
1分钟前
大模型应助香蕉酸奶采纳,获得10
1分钟前
ff完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136977
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784018
捐赠科研通 2444003
什么是DOI,文献DOI怎么找? 1299592
科研通“疑难数据库(出版商)”最低求助积分说明 625477
版权声明 600989