Novel hollow core-shell Zn0.5Cd0.5S@ZnIn2S4/MoS2 nanocages with Z-scheme heterojunction for enhanced photocatalysis of hydrogen generation

纳米笼 异质结 光催化 分解水 制氢 贵金属 纳米技术 纳米片 化学 材料科学 化学工程 金属 光电子学 催化作用 工程类 冶金 生物化学
作者
Yunqi Ning,Shan Wang,Hanbing Wang,Wei Quan,Daqi Lv,Shansheng Yu,Xiaoying Hu,Hongwei Tian
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:662: 928-940 被引量:15
标识
DOI:10.1016/j.jcis.2024.02.082
摘要

The development of low-cost and efficient metal sulfide photocatalysts through morphological and structural design is vital to the advancement of the hydrogen economy. However, metal sulfide semiconductor photocatalysts still suffer from low carrier separation and poor solar-to-hydrogen conversion efficiencies. Herein, two-dimensional ZnIn2S4 nanosheets were grown on Zn0.5Cd0.5S hollow nanocages to construct Zn0.5Cd0.5S@ZnIn2S4 hollow nanocages for the first time. Novel hollow core-shell Zn0.5Cd0.5S@ZnIn2S4/MoS2 nanocages with Z-scheme heterojunction structures were obtained by incorporating MoS2 nanosheet co-catalyst via the solvothermal method. The resulting Zn0.5Cd0.5S@ZnIn2S4/MoS2 exhibited unique structural and compositional advantages, leading to remarkable photocatalytic hydrogen evolution rates of up to 8.5 mmol·h-1·g-1 without the use of any precious metal co-catalysts. This rate was 10.6-fold and 7.1-fold higher compared to pure ZnIn2S4 and Zn0.5Cd0.5S, respectively. Moreover, the optimized Zn0.5Cd0.5S@ZnIn2S4/MoS2 photocatalyst outperformed numerous reported ZnIn2S4-based photocatalysts and some ZnIn2S4-based photocatalysts based on precious metal co-catalysts. The exceptional photocatalytic performance of Zn0.5Cd0.5S@ZnIn2S4/MoS2 can be attributed to the Z-scheme heterojunction of core-shell structure that enhanced charge carrier separation and transport, as well as the co-catalytic action of MoS2. Overall, the proposed Zn0.5Cd0.5S@ZnIn2S4/MoS2 with heterojunction structure is a promising candidate for the preparation of efficient photocatalysts for solar-to-hydrogen energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
矮小的茹妖完成签到 ,获得积分10
1秒前
宇文安寒发布了新的文献求助10
1秒前
2秒前
科研通AI5应助carbon-dots采纳,获得10
2秒前
pluto应助期待未来的自己采纳,获得10
3秒前
OrangeBlueHeart完成签到,获得积分10
3秒前
Singularity应助无奈的石头采纳,获得10
4秒前
张强完成签到,获得积分10
4秒前
Super发布了新的文献求助50
4秒前
Crystal完成签到,获得积分10
5秒前
gdh发布了新的文献求助10
5秒前
文艺代灵发布了新的文献求助10
5秒前
6秒前
给你吃一个屁完成签到,获得积分10
6秒前
小二郎应助文艺怀蝶采纳,获得10
6秒前
pluto应助ch采纳,获得10
7秒前
7秒前
8秒前
9秒前
FashionBoy应助Crystal采纳,获得10
9秒前
辛勤易烟发布了新的文献求助10
10秒前
上官若男应助单纯的逊采纳,获得10
11秒前
科研通AI5应助橙子采纳,获得10
11秒前
11秒前
椰子壳完成签到,获得积分10
12秒前
12秒前
13秒前
爆米花应助Super采纳,获得50
13秒前
韩韩发布了新的文献求助10
13秒前
隐形曼青应助ldd采纳,获得10
14秒前
佘同学发布了新的文献求助10
16秒前
pluto应助期待未来的自己采纳,获得10
17秒前
你还要猫怎样完成签到,获得积分10
17秒前
古德曼完成签到 ,获得积分10
18秒前
秦彻关注了科研通微信公众号
19秒前
19秒前
19秒前
Went完成签到,获得积分10
20秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794