Multi-Level Swin Transformer Enabled Automatic Segmentation and Classification of Breast Metastases

计算机科学 分割 人工智能 变压器 模式识别(心理学) 工程类 电气工程 电压
作者
Anum Masood,Usman Naseem,Jinman Kim
标识
DOI:10.1109/embc40787.2023.10340831
摘要

Detection of metastatic breast cancer lesions is a challenging task in breast cancer treatment. The recent advancements in deep learning gained attention owing to its robustness, particularly in addressing automated segmentation and classification issues in medical images. In this paper, we proposed a modified Swin Transformer model (mST) integrated with a novel Multi-Level Adaptive Feature Fusion (MLAFF) Module. We constructed a modified Swin Transformer network comprising of a Local Transferable MSA (LT-MSA) and a Global Transferable MSA (GT-MSA) in addition to a Feed Forward Network (FFN). Our novel Multi-Level Adaptive Feature Fusion (MLAFF) module iteratively combines the features throughout multiple transformers. We utilized a pre-trained deep learning model U-Net and trained it on mammography utilizing Transfer Learning for automated segmentation. The proposed method, mST-MLAFF, is used for breast cancer classification into normal, benign, and malignant classes. Our model outperformed comparison methods based on U-Net and Swin Transformer in breast metastatic lesion segmentation on the seven benchmark datasets, namely INBreast, DDSM, MIAS, CBIS-DDSM, MIMBCD-UI, KAU-BCMD, and Mammographic Masses. Our model achieved 98% Dice-Similarity coefficient (DSC) for segmentation and an average of 94.5% accuracy for classification, whereas U-Net based model achieved 92% DSC and Swin Transformer achieved 93% DSC. Extensive performance evaluation of our model on benchmark datasets shows the potential of our model for breast cancer classification.Clinical relevance- This research work is focused on assisting the radiologist in the early detection and classification of breast cancer. A single mammography image is analyzed in less than a minute for automated segmentation and classification into malignant and benign classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助缥缈鸭子采纳,获得10
2秒前
3秒前
6秒前
7秒前
风中小懒虫完成签到,获得积分10
8秒前
小蘑菇应助Elvira采纳,获得10
9秒前
kdb发布了新的文献求助10
9秒前
11秒前
13秒前
Akim应助jinying采纳,获得10
13秒前
feihu发布了新的文献求助10
14秒前
迷人耗子精完成签到,获得积分10
17秒前
17秒前
CipherSage应助chuanfu采纳,获得10
18秒前
缪夜蕾发布了新的文献求助10
19秒前
CodeCraft应助feihu采纳,获得10
19秒前
CJJ发布了新的文献求助10
20秒前
一蓑烟雨任平生应助vsoar采纳,获得10
21秒前
21秒前
缥缈鸭子完成签到,获得积分10
22秒前
22秒前
好好好发布了新的文献求助10
22秒前
852应助Egwei采纳,获得100
23秒前
24秒前
缪夜蕾完成签到,获得积分10
26秒前
直率香寒发布了新的文献求助10
26秒前
炼丹发布了新的文献求助10
26秒前
jinying发布了新的文献求助10
27秒前
水悟子完成签到,获得积分10
27秒前
彭于晏应助lh采纳,获得10
28秒前
桐桐应助adinike采纳,获得10
29秒前
29秒前
彳亍完成签到 ,获得积分10
29秒前
隐形曼青应助Dormantparner采纳,获得10
31秒前
33秒前
33秒前
领导范儿应助直率香寒采纳,获得10
33秒前
所所应助无奈梦岚采纳,获得10
34秒前
DINGJIELUO发布了新的文献求助10
34秒前
35秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821