USBDAN: Unsupervised Scale-aware and Boundary-aware Domain Adaptive Network for Gastric Tumor Segmentation

计算机科学 分割 人工智能 边界(拓扑) 人工神经网络 图像分割 模式识别(心理学) 领域(数学分析) 医学影像学 比例(比率) 计算机视觉 数据挖掘 数学 数学分析 物理 量子力学
作者
Yongtao Zhang,Ning Yuan,Bing Liu,Aocai Yang,Hongwei Yu,Kuan Lv,Jixin Luan,Pianpian Hu,Haijun Lei,Tianfu Wang,Guolin Ma,Baiying Lei
标识
DOI:10.1109/embc40787.2023.10340877
摘要

Accurate segmentation of gastric tumors from computed tomography (CT) images provides useful image information for guiding the diagnosis and treatment of gastric cancer. Researchers typically collect datasets from multiple medical centers to increase sample size and representation, but this raises the issue of data heterogeneity. To this end, we propose a new cross-center 3D tumor segmentation method named unsupervised scale-aware and boundary-aware domain adaptive network (USBDAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale features from the CT images with anisotropic resolution, and a scale-aware and boundary-aware domain alignment (SaBaDA) module for adaptively aligning multi-scale features between two domains and enhancing tumor boundary drawing based on location-related information drawn from each sample across all domains. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers. Our results demonstrate that the proposed method outperforms several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
科研通AI5应助wangyanwxy采纳,获得10
3秒前
36456657应助豆dou采纳,获得10
3秒前
4秒前
4秒前
5秒前
buno应助jy采纳,获得10
6秒前
paparazzi221发布了新的文献求助10
7秒前
田生完成签到,获得积分10
7秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
7秒前
7秒前
爆米花应助towerman采纳,获得10
8秒前
羊笨笨完成签到 ,获得积分10
8秒前
9秒前
光亮芷天完成签到,获得积分10
9秒前
9秒前
10秒前
粗犷的问夏完成签到,获得积分10
11秒前
知行合一完成签到 ,获得积分10
12秒前
12秒前
13秒前
李爱国应助晨曦采纳,获得10
14秒前
0128lun发布了新的文献求助10
14秒前
phd发布了新的文献求助10
15秒前
君无名完成签到 ,获得积分10
15秒前
经年发布了新的文献求助10
15秒前
QXR完成签到,获得积分10
16秒前
豆dou完成签到,获得积分10
16秒前
Dddd发布了新的文献求助10
16秒前
HCl完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
Hollen完成签到 ,获得积分10
20秒前
慕青应助学术蠕虫采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808