Incrementally Adapting Pretrained Model Using Network Prior for Multi-Focus Image Fusion

计算机科学 人工智能 光学(聚焦) 图像融合 计算机视觉 图像(数学) 图像处理 模式识别(心理学) 光学 物理
作者
Xingyu Hu,Junjun Jiang,Chenyang Wang,Xianming Liu,Jiayi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3950-3963 被引量:1
标识
DOI:10.1109/tip.2024.3409940
摘要

Multi-focus image fusion can fuse the clear parts of two or more source images captured at the same scene with different focal lengths into an all-in-focus image. On the one hand, previous supervised learning-based multi-focus image fusion methods relying on synthetic datasets have a clear distribution shift with real scenarios. On the other hand, unsupervised learning-based multi-focus image fusion methods can well adapt to the observed images but lack the general knowledge of defocus blur that can be learned from paired data. To avoid the problems of existing methods, this paper presents a novel multi-focus image fusion model by considering both the general knowledge brought by the supervised pretrained backbone and the extrinsic priors optimized on specific testing sample to improve the performance of image fusion. To be specific, the Incremental Network Prior Adaptation (INPA) framework is proposed to incrementally integrate features extracted from the pretrained strong baselines into a tiny prior network (6.9% parameters of the backbone network) to boost the performance for test samples. We evaluate our method on both synthetic and real-world public datasets (Lytro, MFI-WHU, and Real-MFF) and show that our method outperforms existing supervised learning-based methods and unsupervised learning based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy发布了新的文献求助30
1秒前
量子星尘发布了新的文献求助150
2秒前
芝士发布了新的文献求助10
2秒前
香蕉觅云应助HJJHJH采纳,获得10
3秒前
矮小的向雪完成签到 ,获得积分10
3秒前
三腔二囊管完成签到,获得积分10
3秒前
王圈完成签到,获得积分10
3秒前
孤独的乌龟完成签到,获得积分10
4秒前
LUK_完成签到,获得积分10
4秒前
6秒前
冷傲新柔完成签到,获得积分10
7秒前
8秒前
11秒前
科研通AI6应助ayumi采纳,获得10
12秒前
cy关闭了cy文献求助
12秒前
852应助哩蒜呐采纳,获得10
13秒前
NexusExplorer应助我必中采纳,获得10
13秒前
阿崔完成签到,获得积分10
13秒前
冷傲新柔发布了新的文献求助10
13秒前
汉堡包应助qq采纳,获得10
15秒前
15秒前
彭于晏应助辛勤的日记本采纳,获得30
15秒前
安详的夜蕾完成签到,获得积分10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
郭郝应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得150
16秒前
研友_VZG7GZ应助xuan采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
文艺紫菜应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099