DrugSK: A Stacked Ensemble Learning Framework for Predicting Drug Combinations of Multiple Diseases

机器学习 蓝图 人工智能 随机森林 计算机科学 逻辑回归 支持向量机 特征(语言学) 药品 领域(数学) 集成学习 集合(抽象数据类型) 医学 药理学 数学 工程类 哲学 机械工程 语言学 程序设计语言 纯数学
作者
Siqi Chen,Nan Gao,Chunzhi Li,Fei Zhai,Xiwei Jiang,Peng Zhang,Jibin Guan,Kefeng Li,Rongwu Xiang,Guixia Ling
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (13): 5317-5327
标识
DOI:10.1021/acs.jcim.4c00296
摘要

Combination therapy is an important direction of continuous exploration in the field of medicine, with the core goals of improving treatment efficacy, reducing adverse reactions, and optimizing clinical outcomes. Machine learning technology holds great promise in improving the prediction of drug synergy combinations. However, most studies focus on single disease-oriented collaborative predictive models or involve excessive feature categories, making it challenging to predict the majority of new drugs. To address these challenges, the DrugSK comprehensive model was developed, which utilizes SMILES-BERT to extract structural information from 3492 drugs and trains on reactions from 48,756 drug combinations. DrugSK is an integrated learning model capable of predicting interactions among various drug categories. First, the primary learner is trained from the initial data set. Random forest, support vector machine, and XGboost model are selected as primary learners and logistic regression as secondary learners. A new data set is then "generated" to train level 2 learners, which can be thought of as a prediction for each model. Finally, the results are filtered using logistic regression. Furthermore, the combination of the new antibacterial drug Drafloxacin with other antibacterial agents was tested. The synergistic effect of Drafloxacin and Isavuconazonium in the fight against Candida albicans has been confirmed, providing enlightenment for the clinical treatment of skin infection. DrugSK's prediction is accurate in practical application and can also predict the probability of the outcome. In addition, the tendency of Drafloxacin and antifungal drugs to be synergistic was found. The development of DrugSK will provide a new blueprint for predicting drug combination synergies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月夏栀完成签到,获得积分10
1秒前
zhj完成签到,获得积分0
1秒前
顽固分子完成签到 ,获得积分10
1秒前
遗忘完成签到,获得积分10
2秒前
我不看月亮完成签到,获得积分10
4秒前
子川完成签到 ,获得积分10
6秒前
不想看文献完成签到,获得积分10
6秒前
fei完成签到,获得积分10
6秒前
情怀应助CBP采纳,获得10
7秒前
9秒前
顾矜应助聪慧芷巧采纳,获得10
9秒前
11秒前
宋子虎完成签到 ,获得积分10
12秒前
Roger完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
深情安青应助木木采纳,获得10
15秒前
snowpie完成签到 ,获得积分10
17秒前
12305014077完成签到,获得积分10
19秒前
松鼠15111发布了新的文献求助10
20秒前
15327432191完成签到 ,获得积分10
21秒前
XY发布了新的文献求助10
21秒前
小天狼星完成签到,获得积分10
22秒前
科研通AI5应助清新的听南采纳,获得10
23秒前
冰留完成签到 ,获得积分10
25秒前
锋回露转123完成签到,获得积分10
26秒前
广旭完成签到 ,获得积分10
28秒前
zzz完成签到,获得积分10
29秒前
29秒前
晓先森完成签到,获得积分10
31秒前
不会吹口哨完成签到,获得积分10
33秒前
xixi发布了新的文献求助10
33秒前
暴躁的马里奥完成签到,获得积分10
33秒前
34秒前
34秒前
happpy完成签到,获得积分10
35秒前
开心的火龙果完成签到,获得积分10
35秒前
冯冯完成签到,获得积分10
36秒前
榆木桢楠完成签到,获得积分10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689