DrugSK: A Stacked Ensemble Learning Framework for Predicting Drug Combinations of Multiple Diseases

机器学习 蓝图 人工智能 随机森林 计算机科学 逻辑回归 支持向量机 特征(语言学) 药品 领域(数学) 集成学习 集合(抽象数据类型) 医学 药理学 数学 机械工程 语言学 哲学 纯数学 工程类 程序设计语言
作者
Siqi Chen,Nan Gao,Chunzhi Li,Fei Zhai,Xiwei Jiang,Peng Zhang,Jibin Guan,Kefeng Li,Rongwu Xiang,Guixia Ling
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (13): 5317-5327
标识
DOI:10.1021/acs.jcim.4c00296
摘要

Combination therapy is an important direction of continuous exploration in the field of medicine, with the core goals of improving treatment efficacy, reducing adverse reactions, and optimizing clinical outcomes. Machine learning technology holds great promise in improving the prediction of drug synergy combinations. However, most studies focus on single disease-oriented collaborative predictive models or involve excessive feature categories, making it challenging to predict the majority of new drugs. To address these challenges, the DrugSK comprehensive model was developed, which utilizes SMILES-BERT to extract structural information from 3492 drugs and trains on reactions from 48,756 drug combinations. DrugSK is an integrated learning model capable of predicting interactions among various drug categories. First, the primary learner is trained from the initial data set. Random forest, support vector machine, and XGboost model are selected as primary learners and logistic regression as secondary learners. A new data set is then "generated" to train level 2 learners, which can be thought of as a prediction for each model. Finally, the results are filtered using logistic regression. Furthermore, the combination of the new antibacterial drug Drafloxacin with other antibacterial agents was tested. The synergistic effect of Drafloxacin and Isavuconazonium in the fight against Candida albicans has been confirmed, providing enlightenment for the clinical treatment of skin infection. DrugSK's prediction is accurate in practical application and can also predict the probability of the outcome. In addition, the tendency of Drafloxacin and antifungal drugs to be synergistic was found. The development of DrugSK will provide a new blueprint for predicting drug combination synergies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Joey完成签到 ,获得积分10
7秒前
内向的小凡完成签到,获得积分10
9秒前
10秒前
14秒前
木槿完成签到 ,获得积分10
14秒前
在水一方应助lin229采纳,获得10
15秒前
酷波er应助coco采纳,获得30
15秒前
李明完成签到,获得积分10
15秒前
诺诺完成签到 ,获得积分10
17秒前
Jieyu发布了新的文献求助10
17秒前
17秒前
guhuihaozi完成签到,获得积分10
17秒前
李健应助斯文黎云采纳,获得10
17秒前
Tracy麦子发布了新的文献求助10
18秒前
19秒前
懵了完成签到,获得积分10
19秒前
mylaodao完成签到,获得积分0
20秒前
vbnn完成签到 ,获得积分10
24秒前
忐忑的雪糕完成签到 ,获得积分10
25秒前
李健的粉丝团团长应助sdh采纳,获得10
25秒前
小燕子完成签到 ,获得积分10
26秒前
zzzz完成签到,获得积分20
28秒前
29秒前
29秒前
yeurekar完成签到,获得积分10
30秒前
32秒前
斯文黎云发布了新的文献求助10
33秒前
南宫映榕完成签到,获得积分10
33秒前
CodeCraft应助pizi采纳,获得10
33秒前
贤嘚嘚完成签到,获得积分10
33秒前
木木 12完成签到,获得积分10
33秒前
34秒前
Hysen_L完成签到,获得积分10
35秒前
恶恶么v发布了新的文献求助10
35秒前
合适善若发布了新的文献求助10
36秒前
37秒前
圆芋头发布了新的文献求助10
38秒前
38秒前
英姑应助莫西莫西采纳,获得10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905