Research on machine learning forecasting and early warning model for rainfall-induced landslides in Yunnan province

山崩 支持向量机 归一化差异植被指数 仰角(弹道) 预警系统 随机森林 逻辑回归 计算机科学 Boosting(机器学习) 预警系统 机器学习 数据挖掘 人工智能 算法 统计 地质学 数学 气候变化 地震学 电信 海洋学 几何学
作者
Jia Kang,Bingcheng Wan,Zhiqiu Gao,Shaohui Zhou,Huansang Chen,Huan Shen
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-64679-0
摘要

Abstract Landslides are highly destructive geological disasters that pose a serious threat to the safety of people’s lives and property. In this study, historical records of landslides in Yunnan Province, along with eight underlying factors of landslide (elevation, slope, aspect, lithology, land cover type, normalized difference vegetation index (NDVI), soil type, and average annual precipitation (AAP)), as well as historical rainfall and current rainfall data were utilized. Firstly, we analyzed the sensitivity of each underlying factor in the study area using the frequency ratio (FR) method and obtained a landslide susceptibility map (LSM). Then, we constructed a regional rainfall-induced landslides (RIL) probability forecasting model based on machine learning (ML) algorithms and divided warning levels. In order to construct a better RIL prediction model and explore the effects of different ML algorithms and input values of the underlying factor on the model, we compared five ML classification algorithms: extreme gradient boosting (XGBoost), k-nearest neighbor (KNN), support vector machine (SVM), logistic regression (LR), and random forest (RF) algorithms and three representatives of the input values of the underlying factors. The results show that among the obtained forecasting models, the LSM-based RF model performs the best, with an accuracy (ACC) of 0.906, an area under the curve (AUC) of 0.954, a probability of detection (POD) of 0.96 in the test set, and a prediction accuracy of 0.8 in the validation set. Therefore, we recommend using RF-LSM model as the RIL forecasting model for Yunnan Province and dividing warning levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
研友_VZG7GZ应助优雅的抚琴采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
和谐的素完成签到,获得积分10
3秒前
4秒前
4秒前
Drogoo发布了新的文献求助10
6秒前
领导范儿应助FACEISIN采纳,获得10
6秒前
6秒前
Owen应助有魅力的雨雪采纳,获得10
7秒前
小盼虫发布了新的文献求助10
9秒前
啦啦啦发布了新的文献求助10
9秒前
10秒前
Adel完成签到 ,获得积分10
11秒前
南、完成签到,获得积分10
11秒前
13秒前
HH完成签到,获得积分10
13秒前
无私的香菇完成签到,获得积分10
13秒前
qiongqiong完成签到,获得积分10
13秒前
oh应助rosa采纳,获得10
14秒前
15秒前
归尘应助111采纳,获得30
15秒前
16秒前
爆米花应助小盼虫采纳,获得10
16秒前
大模型应助团子采纳,获得10
16秒前
JamesPei应助coc采纳,获得10
17秒前
Akim应助睡到人间煮饭时采纳,获得10
18秒前
优雅的抚琴完成签到,获得积分10
18秒前
温暖寻雪完成签到,获得积分10
18秒前
Liufgui应助代博士采纳,获得10
19秒前
20秒前
温暖寻雪发布了新的文献求助30
21秒前
MTF发布了新的文献求助10
21秒前
22秒前
单纯季节完成签到,获得积分10
22秒前
23秒前
专一发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075