钙钛矿(结构)
材料科学
压缩(物理)
碳纤维
理论(学习稳定性)
工程物理
化学工程
复合材料
计算机科学
复合数
物理
工程类
机器学习
作者
Xinwei Li,Nianqing Fu,Aohan Mei,Xiaocao Peng,Hewei Wang,Yuan Lin,Jun Du
出处
期刊:Solar RRL
[Wiley]
日期:2024-06-10
卷期号:8 (16)
标识
DOI:10.1002/solr.202400295
摘要
Carbon electrode‐based perovskite solar cells (C‐PSCs) without hole transport layer (HTL) have been emerging as a promising low‐cost photovoltaic technology with excellent stability for commercialization. However, the loose physical contact between the carbon electrode and perovskite layer, as well as the relatively poor conductivity of the carbon film, contributes mainly to the large gap in the power conversion efficiency (PCE) between C‐PSCs and the metal (Ag, Au, etc.,) electrode‐based counterparts. To this end, a simple but effective mechanical compression strategy for efficient C‐PSCs is developed. The mechanical compression densifies the porous carbon electrode for high film conductivity and also provides intimate contact between carbon and perovskite layers for fast charge extraction. Consequently, the resulting HTL‐free C‐PSCs using MAPbI 3 (MA = methylammonium) absorber yield a PCE of 15.29%, corresponding to a 27.6% improvement compared to the counterpart without mechanical pressing treatment. Moreover, the compacted carbon film also serves as an enhanced barrier against the intrusion of water and oxygen, and the unencapsulated device retains 88.9% of its initial PCE after 1000 h of aging in ambient conditions with 35 ± 2% humidity. This work paves a simple and effective way toward efficient and stable C‐PSC.
科研通智能强力驱动
Strongly Powered by AbleSci AI