电化学
熔盐
法拉第效率
一氧化碳
催化作用
材料科学
锌
电解
选择性
二氧化碳电化学还原
无机化学
化学
电极
物理化学
冶金
有机化学
电解质
作者
Qi Hao,Cheng Zhen,Qi Tang,Jiazhi Wang,Peiyu Ma,Junxiu Wu,Tianyang Wang,Dongxue Liu,Linxuan Xie,Xiao Liu,Meng Gu,Michael R. Hoffmann,Gang Yu,Kai Liu,Jun Lü
标识
DOI:10.1002/adma.202406380
摘要
Abstract Clarifying the formation mechanism of single‐atom sites guides the design of emerging single‐atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten‐salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn‐N 2 Cl 2 to Zn‐N 4 . The electrochemical tests and in situ attenuated total reflectance‐surface‐enhanced infrared absorption spectroscopy confirm that the Zn‐N 4 atomic sites are active for electrochemical carbon dioxide (CO 2 ) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K 2 SO 4 , pH = 1), the Zn SAC formed at 1000 °C (Zn 1 NC) containing Zn‐N 4 sites enables highly selective CO 2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100–600 mA cm −2 . During a 50 h continuous electrolysis at the industrial current density of 200 mA cm −2 , Zn 1 NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature‐universal formation of single‐atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO 2 electroreduction and extends the synthesis of SACs with controllable coordination sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI