Comparative study of YOLOv8 and YOLO-NAS for agriculture application

卷积神经网络 计算机科学 人工智能 目标检测 深度学习 召回 葡萄园 模式识别(心理学) 精确性和召回率 F1得分 机器学习 地理 考古 哲学 语言学
作者
Yogesh Kumar,Pankaj Kumar
标识
DOI:10.1109/spin60856.2024.10511673
摘要

Agricultural tasks have significantly improved as a result of ongoing machine learning (ML) improvements. Deep learning (DL), which has a significant capacity for extracting high-dimensional features from fruit images, is widely applied to the automated detection and harvesting of fruits. In the fields of fruit recognition and automated harvesting, Convolutional Neural Networks (CNNs) have demonstrated the ability to attain speed and accuracy levels that rival human performance. This article compares the performance of YOLOv8m with YOLO-NASl for grapes detection. In this research, the YOLOv8 and YOLO-nas object detection models, including their different scales, were trained using a publicly available Embrapa WGISD dataset. The dataset consists of 300 digital images of grapes growing in vineyard settings, and it includes a total of 4,432 annotations. The performance of the YOLOv8m and YOLO-NASl model were evaluated using metrics such as recall, precision, and the mean average precision (mAP@50). In the subset of test data, YOLOv8m achieved the top overall performance, with a precision (0.855), mAP@50 (0.885), and recall (0.827), while best recall was obtained from YOLO-NASl (0.934).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到 ,获得积分10
1秒前
领导范儿应助wangqing采纳,获得10
1秒前
淡定从凝发布了新的文献求助10
1秒前
1秒前
张含静发布了新的文献求助10
2秒前
吴彦祖举报机灵的大白菜求助涉嫌违规
2秒前
Wu完成签到,获得积分10
3秒前
4秒前
愿好发布了新的文献求助30
4秒前
研友_VZG7GZ应助重重采纳,获得10
5秒前
gua完成签到 ,获得积分10
5秒前
Shanglinqin发布了新的文献求助10
5秒前
actor2006完成签到,获得积分10
5秒前
浮游应助热心的荣轩采纳,获得10
5秒前
xxfsx应助张含静采纳,获得10
7秒前
7秒前
梁锐彬发布了新的文献求助10
7秒前
Lucas应助夏宋采纳,获得10
7秒前
8秒前
慕青应助温婉的篮球采纳,获得10
9秒前
9秒前
kikichiu应助zhihe采纳,获得10
10秒前
10秒前
10秒前
梁锐彬完成签到,获得积分10
12秒前
13秒前
13秒前
7分运气完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
sugarfanfan发布了新的文献求助10
15秒前
CoCo发布了新的文献求助10
15秒前
16秒前
爆米花应助田田采纳,获得10
17秒前
小蘑菇应助wangqing采纳,获得10
17秒前
Shanglinqin完成签到,获得积分10
17秒前
徐玉发布了新的文献求助10
18秒前
张含静完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582