Comparative study of YOLOv8 and YOLO-NAS for agriculture application

卷积神经网络 计算机科学 人工智能 目标检测 深度学习 召回 葡萄园 模式识别(心理学) 精确性和召回率 F1得分 机器学习 地理 考古 哲学 语言学
作者
Yogesh Kumar,Pankaj Kumar
标识
DOI:10.1109/spin60856.2024.10511673
摘要

Agricultural tasks have significantly improved as a result of ongoing machine learning (ML) improvements. Deep learning (DL), which has a significant capacity for extracting high-dimensional features from fruit images, is widely applied to the automated detection and harvesting of fruits. In the fields of fruit recognition and automated harvesting, Convolutional Neural Networks (CNNs) have demonstrated the ability to attain speed and accuracy levels that rival human performance. This article compares the performance of YOLOv8m with YOLO-NASl for grapes detection. In this research, the YOLOv8 and YOLO-nas object detection models, including their different scales, were trained using a publicly available Embrapa WGISD dataset. The dataset consists of 300 digital images of grapes growing in vineyard settings, and it includes a total of 4,432 annotations. The performance of the YOLOv8m and YOLO-NASl model were evaluated using metrics such as recall, precision, and the mean average precision (mAP@50). In the subset of test data, YOLOv8m achieved the top overall performance, with a precision (0.855), mAP@50 (0.885), and recall (0.827), while best recall was obtained from YOLO-NASl (0.934).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WNL发布了新的文献求助10
1秒前
1秒前
1秒前
所所应助婉君采纳,获得10
1秒前
赘婿应助玄音采纳,获得10
2秒前
2秒前
张本丁完成签到,获得积分10
3秒前
3秒前
3秒前
在吗小吴完成签到,获得积分10
3秒前
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
LLLLLLLj发布了新的文献求助10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得20
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
PiX0应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
不安的傲白完成签到,获得积分20
5秒前
Orange应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
6秒前
milkmore完成签到,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371