Comparative study of YOLOv8 and YOLO-NAS for agriculture application

卷积神经网络 计算机科学 人工智能 目标检测 深度学习 召回 葡萄园 模式识别(心理学) 精确性和召回率 F1得分 机器学习 地理 考古 哲学 语言学
作者
Yogesh Kumar,Pankaj Kumar
标识
DOI:10.1109/spin60856.2024.10511673
摘要

Agricultural tasks have significantly improved as a result of ongoing machine learning (ML) improvements. Deep learning (DL), which has a significant capacity for extracting high-dimensional features from fruit images, is widely applied to the automated detection and harvesting of fruits. In the fields of fruit recognition and automated harvesting, Convolutional Neural Networks (CNNs) have demonstrated the ability to attain speed and accuracy levels that rival human performance. This article compares the performance of YOLOv8m with YOLO-NASl for grapes detection. In this research, the YOLOv8 and YOLO-nas object detection models, including their different scales, were trained using a publicly available Embrapa WGISD dataset. The dataset consists of 300 digital images of grapes growing in vineyard settings, and it includes a total of 4,432 annotations. The performance of the YOLOv8m and YOLO-NASl model were evaluated using metrics such as recall, precision, and the mean average precision (mAP@50). In the subset of test data, YOLOv8m achieved the top overall performance, with a precision (0.855), mAP@50 (0.885), and recall (0.827), while best recall was obtained from YOLO-NASl (0.934).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
浪潮千千完成签到,获得积分10
2秒前
lalala发布了新的文献求助10
3秒前
4秒前
冯老师发布了新的文献求助10
4秒前
花花发布了新的社区帖子
5秒前
5秒前
5秒前
6秒前
wanci应助叶子采纳,获得30
6秒前
充电宝应助吴思航采纳,获得10
7秒前
8秒前
浪潮千千发布了新的文献求助10
9秒前
9秒前
wxyshare应助DFX采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
李健的小迷弟应助一一采纳,获得10
10秒前
10秒前
QHB发布了新的文献求助10
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
Simon1640发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406906
求助须知:如何正确求助?哪些是违规求助? 4524590
关于积分的说明 14099375
捐赠科研通 4438444
什么是DOI,文献DOI怎么找? 2436281
邀请新用户注册赠送积分活动 1428252
关于科研通互助平台的介绍 1406358