Dual-level Hypergraph Contrastive Learning with Adaptive Temperature Enhancement

超图 对偶(语法数字) 计算机科学 人工智能 自然语言处理 数学 语言学 离散数学 哲学
作者
Yiyue Qian,Tianyi Ma,Chuxu Zhang,Yanfang Ye
标识
DOI:10.1145/3589335.3651493
摘要

Inspired by the success of graph contrastive learning, researchers have begun exploring the benefits of contrastive learning over hypergraphs. However, these works have the following limitations in modeling the high-order relationships over unlabeled data: (i) They primarily focus on maximizing the agreements among individual node embeddings while neglecting the capture of group-wise collective behaviors within hypergraphs; (ii) Most of them disregard the importance of the temperature index in discriminating contrastive pairs during contrast optimization. To address these limitations, we propose a novel dual-level Hy perG raph C ontrastive L earning framework with Ad aptive T emperature (HyGCL-AdT ) to boost contrastive learning over hypergraphs. Specifically, unlike most works that merely maximize the agreement of node embeddings in hypergraphs, we propose a dual-level contrast mechanism that not only captures the individual node behaviors in a local context but also models the group-wise collective behaviors of nodes within hyperedges from a community perspective. Besides, we design an adaptive temperature-enhanced contrastive optimization to improve the discrimination ability between contrastive pairs. Empirical experiments conducted on seven benchmark hypergraphs demonstrate that HyGCL-AdT exhibits excellent effectiveness compared to state-of-the-art baseline models. The source code is available at \hrefhttps://github.com/graphprojects/HyGCL-AdT https://github.com/graphprojects/HyGCL-AdT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rice0601发布了新的文献求助10
刚刚
老猫完成签到,获得积分10
刚刚
1秒前
May发布了新的文献求助10
1秒前
上官若男应助wangxu采纳,获得10
1秒前
希望天下0贩的0应助七夏采纳,获得10
1秒前
2秒前
2秒前
游a发布了新的文献求助30
3秒前
aaefv完成签到,获得积分10
3秒前
小蚂蚁发布了新的文献求助10
4秒前
5秒前
6秒前
牛拉犁完成签到 ,获得积分10
7秒前
7秒前
美好雨竹完成签到 ,获得积分10
8秒前
ppppp完成签到,获得积分10
9秒前
兽先生发布了新的文献求助10
9秒前
今后应助突突突采纳,获得10
11秒前
11秒前
11秒前
11秒前
小蒋发布了新的文献求助10
11秒前
吕老黄完成签到,获得积分10
12秒前
甜蜜的远山完成签到,获得积分10
13秒前
Yfvonne发布了新的文献求助30
13秒前
Owen应助asd采纳,获得30
13秒前
14秒前
15秒前
大象发布了新的文献求助10
16秒前
wangxu发布了新的文献求助10
16秒前
Uu完成签到,获得积分10
18秒前
20秒前
21秒前
乌禅发布了新的文献求助10
21秒前
22秒前
Orange应助爱笑的万天采纳,获得10
22秒前
22秒前
wangxu完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599